【性能测试】常见适用场景以及策略

面对日益复杂的业务场景和不同的系统架构,前期的需求分析和准备工作,需要耗费很多的时间。而不同的测试策略,也对我们的测试结果是否符合预期目标至关重要。

这篇博客,聊聊我个人对常见的性能测试策略的理解,以及它们的适用场景。。。

一、常见的测试策略

性能测试实施过程中,针对不同的业务场景,我们经过分析和场景建模后,会选择不同的测试策略。下面的十种测试策略,覆盖了绝大多数的场景。

1、并发测试

模拟客户端请求,在单位时间内(S)同时发起一定量的请求,验证系统是否具有并发性的问题。

PS:不要无脑高并发!!!

2、负载测试

不断增加请求压力,直到服务器某个资源项达到饱和(比如CPU使用率达到90%+)或某个指标达到安全临界值(比如运维的监控告警阈值or拐点);

负载测试(也叫阶梯式压测)一般主要用来寻找性能的拐点,验证系统在既有测试环境不同的请求压力下能否正常运行。示例如下:

3、容量测试

采用负载测试策略,验证在现有测试环境下被测系统的最大性能表现(可接受的最大性能表现,不一定是最优性能表现)。

4、极限测试

在既有测试环境下,不考虑资源占用率的极限情况(CPU使用率达到95%以上或IO异常繁忙或Load值较高),在系统不宕机的情况下的最大处理能力。

PS:由于被测系统的业务场景各不相同,这种策略,采用率相对较少。

5、配置测试

不断调整系统各方面的配置(软硬件、参数配置等),验证在性能达到最优时(最优的性能一定是权衡各方面因素找到的平衡点)的最佳配置。

6、浪涌测试

验证系统在某段时间内并发突增或请求量波动较大的情况下,系统能否正常稳定的提供服务。

PS:这种测试策略使用的也相对较少,主要针对不确定性的短期的峰值流量涌入场景(比如某微博的离婚、恋爱、分手话题)。

7、稳定性测试

以恒定的并发数(根据负载测试的结果,CPU使用率在70%时对应的并发数),验证系统在混合场景下的性能表现。

8、批处理测试

验证待测系统在既有环境下,系统的批处理(一般都是一个crontab或者触发式的job)业务能力能否满足生产的业务需求指标。

9、高可用测试

在集群多节点或分布式的情况下,破坏其中一个或多个集群节点,验证系统能否及时恢复服务能力。

10、容错恢复测试

验证系统能否在出现故障的情况下仍能保持正常提供服务的能力或出现故障后的自我恢复能力。比如下面这张图:

a1面积越大,说明系统的处理能力越强;a2面积越大,说明系统稳定性越好;a3面积越大,说明系统的容错能力越好(啧啧,图有点丑。。。)

之前有手动画了好几个性能模型图,找不到了,尴尬。。。

二、适用场景

以上十种测试策略,根据适用的业务&测试场景、采用该策略的目的以及场景出现频次来划分,仅供参考。

三、经验之谈

1、中小型团队:常规的测试策略选型:并发、负载、容量、配置、批处理、稳定性、高可用策略,可以覆盖绝大部分需求。

2、电商类业务:高并发、高可用、稳定性,是重中之重。

3、业务场景:很多时候一个性能需求包含好几个业务场景,但并发、负载、容量、稳定性,建议都采用。

4、需求场景:需求分析和场景建模做不好,测试结果往往偏差很大。

5、压测环境:环境的调研选型,建议和生产环境等配置最小化部署,这是成本和结果精准度的平衡。

6、测试数据:无论是数据量还是数据的有效性以及热点数据的覆盖率,都决定了测试结果的可参考价值。

7、技术建设:基础架构(包括环境、服务部署、详尽的监控体系、问题处理流程)的完备,才能让性能测试左移。

8、文档建设:一定要重视文档建设和数据留存,这样可以避免很多不必要的麻烦和重复性工作。

9、平台化:平台的作用是对流程的规范以及多人协同工作的效率整合,不要过度追求平台化(但一定要有技术规划和方案准备)。

10、不要无脑高并发!!!

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

文档获取方式:点击右边链接领取:软件测试全套资料分享     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/356827.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ中死信交换机的应用,工作原理,实现案例

目录 一、介绍 1. 概述 2. 应用场景 3. 工作原理 二、应用 1. 讲述 2. 运用 三、案例 1. 实践 2. 代码整合 每篇一获 一、介绍 1. 概述 死信交换机是用来处理消息队列中无法被消费者正确处理的消息的交换机。当消息在队列中变成死信时,它会被重新发送…

指针的深入理解(一)

这一节主要复习数组指针,int (* )[ ] 就是数组指针类型的标志。 因为有()将*括起来,所以(*)表示一个指针。[ ] 表示数组,所以(*)[ ]就表示一个指向数组的指针&#xff…

Day02-课后练习2-参考答案(数据类型和运算符)

文章目录 巩固题1、案例:今天是周2,100天以后是周几?2、案例:求三个整数x,y,z中的最大值3、案例:判断今年是否是闰年4、分析如下代码的计算结果5、分析如下代码的计算结果6、分析如下代码的计算结果7、分析如下代码的计…

STM32以太网接口的配置和使用方法详解

STM32 微控制器提供了多种系列和型号,不同型号的芯片可能有不同的以太网接口,包括MAC(媒体访问控制器)和PHY(物理层接口)等组件。在这里,我们以STM32F4系列为例来详细介绍以太网接口的配置和使用…

【精品教程】如何查看iOS崩溃日志

简介 当一个应用程序崩溃,会产生一个崩溃报告(crash report),并存储到设备中。崩溃报告描述了应用程序崩溃的条件,通常包含每个执行线程的完整回溯。查看崩溃报告可以帮助我们了解应用程序的崩溃情况,并尝…

大数据学习之Redis、从零基础到入门(三)

目录 三、redis10大数据类型 1.哪十个? 1.1 redis字符串(String) 1.2 redis列表(List) 1.3 redis哈希表(Hash) 1.4 redis集合(Set) 1.5 redis有序集合&#xff08…

幻兽帕鲁越玩越卡,内存溢出问题如何解决?

近期幻兽帕鲁游戏大火,在联机组队快乐游玩的同时,玩家们也发现了一些小问题。由于游戏有随机掉落材料的设定,服务器在加载掉落物的过程中很容易会出现掉帧、卡顿的情况。某些玩家甚至在游戏1~2时后就出现服务器崩溃的情况&#xf…

dvwa,xss反射型lowmedium

xss&#xff0c;反射型&#xff0c;low&&medium low发现xss本地搭建实操 medium作为初学者的我第一次接触比较浅的绕过思路 low 发现xss 本关无过滤 <script>alert(/xss/)</script> //或 <script>confirm(/xss/)</script> //或 <script&…

解锁潜在价值:服装定制小程序在提升用户忠诚度上的作用

随着科技的不断进步和消费者日益追求个性化的需求&#xff0c;服装定制已成为时尚界的新宠。而在这个快节奏的时代&#xff0c;小程序作为一个方便、实用的工具&#xff0c;为服装品牌打造个性化定制的平台提供了新的可能性。通过利用小程序&#xff0c;服装品牌可以轻松地与消…

使用 FHEW-like 自举 BV-like

参考文献&#xff1a; [CDKS21] Chen H, Dai W, Kim M, et al. Efficient homomorphic conversion between (ring) LWE ciphertexts[C]//International Conference on Applied Cryptography and Network Security. Cham: Springer International Publishing, 2021: 460-479.[K…

关于类加载器的双亲委派机制

什么是双亲委派机制 双亲委派机制指的是&#xff1a;当一个类加载器接收到加载类的任务时&#xff0c;会自底向上的去检查这个类是不是被加载过&#xff0c;如果没有加载过再自上到下进行加载。 如果在向上检查是否加载过的过程中发现已经加载过&#xff0c;那么直接返回这个C…

【git】git update-index --assume-unchanged(不改动.gitignore实现忽略文件)

文章目录 原因分析&#xff1a;添加忽略文件(取消跟踪)的命令&#xff1a;取消忽略文件(恢复跟踪)的命令&#xff1a;查看已经添加了忽略文件(取消跟踪)的命令&#xff1a; 原因分析&#xff1a; 已经维护的项目&#xff0c;文件已经被追踪&#xff0c;gitignore文件不方便修…

系统架构设计师-21年-下午题目

系统架构设计师-21年-下午题目 更多软考知识请访问 https://ruankao.blog.csdn.net/ 试题一必答&#xff0c;二、三、四、五题中任选两题作答 试题一 (25分) 说明 某公司拟开发一套机器学习应用开发平台&#xff0c;支持用户使用浏览器在线进行基于机器学习的智能应用开发…

一文解锁——那些你不太了解的AI!

ChatGPT现象级走红&#xff0c;国内也有文心一言等模型紧随其后&#xff0c;彻底将大语言模型送上大热门。 不管是你是否深度应用过这些模型&#xff0c;不可否认的是&#xff0c;AI已经彻底地融入我们的生活&#xff0c;甚至成为赚钱利器。除了ChatGPT和百度的文心一言&#…

算法沉淀——前缀和(leetcode真题剖析)

算法沉淀——前缀和 01.一维前缀和02.二维前缀和03.寻找数组的中心下标04.除自身以外数组的乘积05.和为 K 的子数组06.和可被 K 整除的子数组07.连续数组08.矩阵区域和 前缀和算法是一种用于高效计算数组或序列中某个范围内元素之和的技巧。它通过预先计算数组的前缀和&#xf…

python之组合数据类型-列表

列表操作 列表增删改查列表增加元素的方法列表删除元素的方法列表修改元素的方法列表查找元素的方法 列表其他常用方法列表的切片用法列表修改排序的方法列表的常用符号、常用函数 列表是什么&#xff1f; 列表是有序集合&#xff0c;列表可以一次性存储几个或几万个元素&#…

[机器学习]KNN——K邻近算法实现

一.K邻近算法概念 二.代码实现 # 0. 引入依赖 import numpy as np import pandas as pd# 这里直接引入sklearn里的数据集&#xff0c;iris鸢尾花 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 切分数据集为训练集和测试…

基于Python 网络爬虫和可视化的房源信息的设计与实现

摘 要 一般来说&#xff0c;在房地产行业&#xff0c;房源信息采集&#xff0c;对企业来说至关重要&#xff0c;通过人工采集数据的方式进行数据收集&#xff0c;既耗时又费力&#xff0c;影响工作效率&#xff0c;还导致信息时效性变差&#xff0c;可靠性偏低&#xff0c;不利…

2023年算法GWCA -CNN-BiLSTM-ATTENTION回归预测(matlab)

2023年算法GWCA -CNN-BiLSTM-ATTENTION回归预测&#xff08;matlab&#xff09; GWCA -CNN-BiLSTM-Attention长城建造算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 长城建造算法&#xff08;Great Wall Construction Algorithm&#xff0c;GWC…

Zabbix交换分区使用率过高排查

Zabbix High swap space usage 问题现象 Zabbix 出现Highswap space usage(less than 50% free)告警&#xff0c;提示交换分区空间使用率超过50% 处理过程 1. 确定swap分区是否已占满 free -h登录Zabbix服务器检查内存情况&#xff0c;检查发现Linux服务器空闲的内存还有不少…