多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测

多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测

目录

    • 多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测;
蜣螂算法优化GRU的学习率,隐藏层节点,正则化系数;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整程序和数据下载方式资源处下载:Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测。
%%  优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 8;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-4, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,p_train,t_train,f_);



%%  记录最佳参数
Best_pos(1, 2) = round(Best_pos(1, 2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);

%%  建立模型
% ----------------------  修改模型结构时需对应修改fical.m中的模型结构  --------------------------
layers = [
    sequenceInputLayer(f_)            % 输入层
    

    reluLayer                         % Relu激活层
    
    fullyConnectedLayer(outdim)       % 输出回归层
    regressionLayer];
 
%%  参数设置
% ----------------------  修改模型参数时需对应修改fical.m中的模型参数  --------------------------
options = trainingOptions('adam', ...           % Adam 梯度下降算法
         'MaxEpochs', 500, ...                  % 最大训练次数 500
         'InitialLearnRate', best_lr, ...       % 初始学习率 best_lr
         'LearnRateSchedule', 'piecewise', ...  % 学习率下降
         'LearnRateDropFactor', 0.5, ...        % 学习率下降因子 0.1
         'LearnRateDropPeriod', 400, ...        % 经过 400 次训练后 学习率为 best_lr * 0.5
         'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
         'ValidationPatience', Inf, ...         % 关闭验证
         'L2Regularization', best_l2, ...       % 正则化参数
         'Plots', 'training-progress', ...      % 画出曲线
         'Verbose', false);

%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);

%%  仿真验证
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    
       
        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);
 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end
      
        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds( Xnew11, lb, ub );
    Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i = ( pNum + 1 ) :12                  % Equation (4)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/355189.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第四十一周:文献阅读+GAN存在的问题和改进

目录 摘要 Abstract 文献阅读&#xff1a;基于Transformer的时间序列生成对抗网络 现有问题 提出方法 相关前提 GAN&#xff08;生成对抗网络&#xff09; Transformer 方法论 时间序列处理 TTS-GAN &#xff08;基于Transformer的时间序列生成对抗网络&#xff09;…

STM32学习笔记(二) —— 调试串口

我们在调试程序时&#xff0c;经常会使用串口打印相关的调试信息&#xff0c;但是单片机串口不能直接与 PC 端的 USB 接口通讯&#xff0c;需要用到一个USB转串口的芯片来充当翻译的角色。我们使用的开发板上有这个芯片&#xff0c;所以在打印调试信息的时候直接使用USB线连接开…

05.领域驱动设计:认识领域事件,解耦微服务的关键

目录 1、概述 2、领域事件 2.1 如何识别领域事件 1.微服务内的领域事件 2.微服务之间的领域事件 3、领域事件总体架构 3.1 事件构建和发布 3.2 事件数据持久化 3.3 事件总线 (EventBus) 3.4 消息中间件 3.5 事件接收和处理 4、案例 5、总结 1、概述 在事件风暴&a…

Jmeter连接数据库报错Cannot load JDBC driver class‘com.mysql.jdbc.Driver’解决

问题产生: 我在用jmeter连接数据库查询我的接口是否添加数据成功时,结果树响应Cannot load JDBC driver class com.mysql.jdbc.Driver 产生原因: 1、连接数据库的用户密码等信息使用的变量我放在了下面,导致没有取到用户名密码IP等信息,导致连接失败 2、jmeter没有JDB…

scrapy的入门使用

1 安装scrapy 命令: sudo apt-get install scrapy或者&#xff1a; pip/pip3 install scrapy2 scrapy项目开发流程 创建项目: scrapy startproject mySpider生成一个爬虫: scrapy genspider itcast itcast.cn提取数据:     根据网站结构在spider中实现数据采集相关内…

MATLAB - 仿真单摆的周期性摆动

系列文章目录 前言 本例演示如何使用 Symbolic Math Toolbox™ 模拟单摆的运动。推导摆的运动方程&#xff0c;然后对小角度进行分析求解&#xff0c;对任意角度进行数值求解。 一、步骤 1&#xff1a;推导运动方程 摆是一个遵循微分方程的简单机械系统。摆最初静止在垂直位置…

2024年数学建模美赛 分析与编程

2024年数学建模美赛 分析与编程 1、本专栏将在2024年美赛题目公布后&#xff0c;进行深入分析&#xff0c;建议收藏&#xff1b; 2、本专栏对2023年赛题&#xff0c;其它题目分析详见专题讨论&#xff1b; 2023年数学建模美赛A题&#xff08;A drought stricken plant communi…

uniapp组件库Card 卡片 的使用方法

目录 #平台差异说明 #基本使用 #配置卡片间距 #配置卡片左上角的缩略图 #配置卡片边框 #设置内边距 #API #Props #Slot #Event 卡片组件一般用于多个列表条目&#xff0c;且风格统一的场景。 #平台差异说明 AppH5微信小程序支付宝小程序百度小程序头条小程序QQ小程…

147基于matlab的信号多层分解和重构

基于matlab的信号多层分解和重构&#xff0c;进行多频率分析的源程序&#xff0c;一般步骤:取样、分解、信号处理、重构&#xff1b;采用离散滤波器对近似系数和小波系数进行操作;程序已调通&#xff0c;可直接运行。 147 离散小波变换 多频率分析 信号重构 (xiaohongshu.com)…

JDK 8 - SerializedLambda

SerializedLambda是Java提供的关于lambda表达式的序列化方案&#xff0c;会将实现了Serializable接口的lambda表达式转换成 SerializedLambda 对象之后再去做序列化。其核心在于Java在对lambda表达式序列化时&#xff0c;虚拟机会添加一个writeReplace()方法。 根据Java的序列化…

mac docker desktop被禁用了,如何使用虚拟机lima运行docker

安装lima brew install lima创建配置 echo "\\ndynamic:\n big-sur:\n image: docker://docker:git\n linux:\n image: docker.io/limasoftware/ubuntu:20.04 \\n" > ~/.lima/default.yaml启动名叫default的虚拟机 limactl start default测试 limactl …

echarts多个折线图共用X轴,实现tooltip合并和分离

echarts共享X轴案例&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</…

【办公类-23-01】20240128《百家姓》单姓与复姓

结果展示 背景需求&#xff1a; 20240128我去了苏州吴江的黎里古镇游玩&#xff0c;哪里有一面墙上都是百家姓做装饰。 这让我又想到我班级里的7个王姓的重姓率&#xff01; 【办公类-19-02-01】20240119统计班级幼儿姓名的长度、汉字重复、拼音重复&#xff08;有无声调&…

【ArcGIS遇上Python】python实现批量XY坐标生成shp点数据文件

单个手动生成:【ArcGIS风暴】ArcGIS 10.2导入Excel数据X、Y坐标(经纬度、平面坐标),生成Shapefile点数据图层 文章目录 一、问题分析二、解决办法三、注意事项一、问题分析 现有多个excel、txt或者csv格式的坐标数据,需要根据其坐标批量一键生成shp点数据,如下X为经度,…

回归预测 | MATLAB实现PSO-GRNN粒子群优化广义回归神经网络多输入单输出预测(含优化前后预测可视化)

回归预测 | MATLAB实现PSO-GRNN粒子群优化广义回归神经网络多输入单输出预测 目录 回归预测 | MATLAB实现PSO-GRNN粒子群优化广义回归神经网络多输入单输出预测预测效果基本介绍程序设计参考资料预测效果 <

力扣3. 无重复字符的最长子串(滑动窗口)

Problem: 3. 无重复字符的最长子串 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 由于题目要求求出字符串中最长的连续无重复字符的最长子串&#xff0c;所以利用这个特性我们可以比较容易的想到利用双指针中的滑动窗口技巧来解决&#xff0c;但在实际的求解中…

【学网攻】 第(14)节 -- 动态路由(EIGRP)

系列文章目录 目录 系列文章目录 文章目录 前言 一、动态路由EIGRP是什么&#xff1f; 二、实验 1.引入 实验步骤 实验拓扑图 实验配置 看到D开头是便是我们的EIGRP动态路由 总结 文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学…

微信小程序(二十二)获取全局实例

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.全局实例的定义位置 2.全局实例中数据的修改方法 源码&#xff1a; app.js App({//数据可以包括在第二级globalData:{userInfo:null,token:1243,userInfo:null},//globalData并不是关键词&#xff0c;数据可以…

WSL2 Debian系统添加支持SocketCAN

本人最近在使用WSL2&#xff0c;Linux系统选择的是Debian&#xff0c;用起来很不错&#xff0c;感觉可以代替VMware Player虚拟机。 但是WSL2 Debian默认不支持SocketCAN&#xff0c;这就有点坑了&#xff0c;由于本人经常要使用SocketCAN功能&#xff0c;所以决定让Debian支持…

菜谱的未来:SpringBoot, Vue与MySQL的智能推荐系统设计

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…