深入理解TCP网络协议(1)

目录

1.TCP协议的段格式

2.TCP原理

2.1确认应答

2.2超时重传

3.三次握手(重点)

4.四次挥手

1.TCP协议的段格式

我们先来观察一下TCP协议的段格式图解:

源/目的端口号:标识数据从哪个进程来,到哪个进程去

32位序号/32位确认号:TCP会话的每一端都包含一个32位(bit)的序列号,该序列号被用来跟踪该端发送的数据量。每一个包中都包含序列号,在接收端则通过确认号用来通知发送端数据成功接收

4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节),所以TCP头部最大的长度是15*4=60 

6位标志位:

URG:紧急指针是否有效

ACK:确认号是否有效

PSH:提示接收端应用程序立刻从TCP缓冲区中把数据读走

RST:要求对方重新连接,我们把携带RST表示的称为复位报文段

SYN:请求建立连接,我们把携带SYN标识的称为同步报文段

FIN:通知对方,本端要关闭了.我们称携带FIN的叫结束报文段

16位校验和:发送端填充,CRC校验,如果接受端校验不通过,则认为数据有问题,这里的校验和不仅仅有TCP首部,也包含的有TCP数据部分

16位紧急指针:标识哪部分数据是紧急数据

40位头部选项和16位窗口大小;我会在后面的博客中详细介绍

2.TCP原理

TCP协议对于数据的管控主要有两个方面:安全和效率

在保证安全的时候,尽可能的提升效率

TCP是如何保证安全的呢,这就要涉及到我们的确认应答机制

2.1确认应答

我们用一张图来描述一下:

TCP协议对每个字节都进行了编号,有与之对应的序列号,当发送数据包到另一端以后,另一端就会确认应答发送应该数据包的最后一位+1,回馈给发送方,发送方下一次就以这个序列号为开始接着发.

2.2超时重传

在数据发送到接收方,没有得到及时响应的时候,就会触发超时重传机制.这也是TCP能保证安全的重要机制.

超时重传有以下两种情况:

1.数据发送给接收端的时候丢包

2.接收端确认应答的时候数据丢包,发送方不清楚数据是否到达,也会触发超时重传

这种情况,接收方会受到重复的数据,所以TCP协议会始别重复的包,并且把多余的给丢弃掉.

这时候我们就可以使用序列号来区分是不是相同的数据,很容易做到去重的效果.

那么这个超时重传的超时,具体时间如何确定呢?

如果时间太长的话,就会影响性能,而时间太短的话,极有可能会造成大量的重复包,造成资源浪费.

TCP协议为了兼顾到这两者,会动态的计算这个最大时间.

在Linux中(windows中也是如此),会以500ms为一个单位去控制,每次判定超时重传的时间都是这个数值的整数倍,如果依旧没有得到应答,就会在2*500ms的时间后再次重传,以此类推,每次都是上一次的两倍,但是如果时间过长又会发生什么呢?

答案是TCP会认为网络出现了问题,强制关闭连接.

3.三次握手(重点)

我们来深入理解,通过画图的方式来生动形象的的描述一下三次握手这个过程.

有的同学可能会有疑惑了,这明明是四次握手,为什么说是三次呢?实际上,第二次和第三次刚好一个在TCP协议格式第二位和第五位,刚好这两个可以一起发送过去,而TCP协议也确实是这样做的.

那么TCP协议的三次握手有什么好处呢?为什么不是两次不是四次,而偏偏是三次?且容我细细道来.

1.可以起到"投石问路"的效果,判断网络是否通畅,这个就像行军打仗的时候,前面的先锋部队会先去前面探路,确定路上没有阻碍了,后面的大部队才会跟着上来.

2.让发送端和接收端都能明白自己和对方的发送接收功能是否是好的.

比如在第一次握手的时候,接收端既然能收到请求就会知道 自己的接收功能莫问题,而发送端的发送功能莫问题

在第二次握手的时候,接收端返回一个应答报文和一个请求连接报文,接收端收到了以后,就知道自己的发送功能和接收功能都没问题.会回给接收端一个应答报文.

第三次握手的时候,接收端收到发送端的应答报文,就明白自己的发送功能和对方的接收功能都是好的.

这样,双方都明白自己和对方的发送功能和接收功能都是否完好.

如果是两次握手,那么就只是在我们上面提到的第二次握手,这样,接收端就不知道自己的发送功能和发送端的接收功能是不是好的,起不到我们想要的效果.

而三次握手已经满足了我们的需求,如果是四次或者多次,虽然也能做到,但是多余了,没有必要在做这么多重复没有意义的工作

4.四次挥手

四次挥手是客户端和服务器端断开连接的一个过程

 和三次握手不同的是,四次挥手不仅仅可以是客户端向服务器端发起,服务器端也可以向客户端发起.

三次握手建立连接的本质就是,客户端和服务器端都保存对端的信息,而断开连接则是在数据结构中删除这些信息.我们先用一张图来观察一下四次挥手的过程.

有兄弟可能会问了,凭什么三次握手就可以把中间的两次合并在一起,而四次挥手却不行呢?

这个问题的原因是因为,三次握手的时候,中间服务器确认应答ack和同步报文段syn都是在操作系统内核中完成的,它百分之百都可以同步的完成,所以可以一起发给客户端,

而四次挥手中,ack是在FIN过来以后立刻又内核给返回,而第二个FIN是由代码来完成的,在Java中就是调用了socket.close()方法来完成,如果代码逻辑很长,运行的时间长的话,这两个是不可能同时在一起发送过去,所以这个事并不是百分之百的,尽管有可能合并,但我们通常情况下,把断开连接的这种操作还是称之为四次挥手

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/354928.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣hot100 每日温度 单调递减栈

Problem: 739. 每日温度 文章目录 思路复杂度💝 单调栈 思路 👩‍🏫 参考题解 复杂度 ⏰ 时间复杂度: O ( n ) O(n) O(n) 🌎 空间复杂度: O ( n ) O(n) O(n) 💝 单调栈 class Solution {public int[] dailyTem…

【人工智能】反向传播算法及梯度下降法

反向传播算法 反向传播算法英文简称为BP,其基本思想是逐一地由样本集中的样本计算出实际输出和误差测度,通过误差测度对权重序列进行调整,重复这个循环,直到误差降至最低。 步骤:用输出层的误差调整输出层权值矩阵&am…

阿里云1分钟成功搭建幻兽帕鲁服务器,Palworld开黑不卡

如何自建幻兽帕鲁服务器?基于阿里云服务器搭建幻兽帕鲁palworld服务器教程来了,一看就懂系列。本文是利用OOS中幻兽帕鲁扩展程序来一键部署幻兽帕鲁服务器,阿里云百科aliyunbaike.com分享官方基于阿里云服务器快速创建幻兽帕鲁服务器教程&…

C++11(中):智能指针

智能指针 1.内存泄漏1.1内存泄漏的概念以及危害1.2内存泄漏的场景1.3如何避免内存泄漏 2.智能指针的使用及原理2.1RAII2.2智能指针的原理2.3 std::auto_ptr2.4 定制删除器2.5 std::unique_ptr2.6 std::shared_ptr2.7 std::weak_ptr2.7.1 std::shared_ptr的循环引用2.7.2 循环引…

go语言(二十一)---- channel的关闭

channel不像文件一样需要经常去关闭,只有当你确实没有任何发送数据了,或者你想显示的结束range循环之类的,才去关闭channel。关闭channel后,无法向channel再发送数据,(引发pannic错误后,导致接收…

力扣20、有效的括号(简单)

1 题目描述 图1 题目描述 2 题目解读 给定的字符串只包含括号,判断这个字符串中的括号是否按照正确顺序出现,即这个字符串是否有效。 3 解法一:栈 C的STL中的stack,在解题时非常好用。 3.1 解题思路 使用栈stk,并枚举…

使用 Ant Design Pro 初始化前端项目

一、使用 pro-cli 来快速的初始化脚手架 1. 打开终端,输入命令 # 使用 npm npm i ant-design/pro-cli -g # create 后面加要初始化的项目名称 pro create leapi-frontend 2. 报错 PS D:\code> pro create leapi-frontend pro : 无法加载文件 D:\tools\nodejs…

Java基础—面向对象OOP—18三大特性:封装、继承与多态

由于本身理解还不是很到位,所以写的很绕,后续待补充优化 1、封装(底层):该露的露,该藏的藏 高内聚:类的内部数据操作细节自己完成,不允许外部干涉低耦合:仅暴露少量的方…

计算机二级C语言的注意事项及相应真题-6-程序填空

目录 51.将参数num按升序插入到数组xx中52.在数组中找出两科成绩之和最高的学生并返回其在数组中的下标53.删除所有串长超过k的字符串,输出剩下的字符串54.根据所给的一组学生的成绩,计算出平均成绩,并计算低于平均成绩的学生的平均成绩55.将…

Python算法题集_找到字符串中所有字母异位词

本文为Python算法题集之一的代码示例 题目438:找到字符串中所有字母异位词 说明:给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字…

【c++】高精度算法(洛谷刷题2024)玩具谜题详解(含图解)

系列文章目录 第三题:玩具谜题 视频讲解:http://【洛谷题单 - 算法 - 高精度】https://www.bilibili.com/video/BV1Ym4y1s7BD?vd_source66a11ab493493f42b08b31246a932bbb 文章目录 目录 系列文章目录 文章目录 前言 一、题目分析以及思考 二、代码…

查询redis路径,清除redis缓存

查询redis路径 1、执行ps -ef | grep redis 命令,结果如下(记住PID) 2、执行ps -u 系统用户名,进一步确定进程id, 我这里的系统用户名是root,执行ps -u root,结果如下: 结合1的操作结果图可知…

SERVLET生命周期API

SERVLET生命周期API 在servlet的生命周期中,将发生创建Servlet上下文、创建会话、向Servlet上下文添加属性等各种事件。在servlet的生命周期内发生事件时,Web容器将通知侦听器类。要接收事件的通知,侦听器类需要扩展Servlet API的侦听器接口。 1. 事件类型 servlet生命周期…

关于如何利用ChatGPT提高编程效率的

自从去年ChatGPT3.5推出以后,这一年时间在编程过程中我也在慢慢熟悉人工智能的使用,目前来看即使是免费的ChatGPT3.5对于编程效率的提升也是有很大帮助的,虽然在使用过程中确实出现了一些问题,本文记录下我的一些心得体会和用法。…

Peter算法小课堂—二叉堆(优先队列)

课前小视频:(7 封私信 / 62 条消息) 看动画,学算法,C实现建立二叉堆,优先队列和堆排序的基础 - 知乎 (zhihu.com) 二叉堆(优先队列) 大家想想,什么数据结构能做到插入(删除&#x…

IDEA 构建开发环境

本博客主要讲解了如何创建一个Maven构建Java项目。(本文是创建一个用Maven构建项目的方式,所以需要对Maven有一定的了解) IDEA 构建开发环境 一、创建一个空工程二、构建一个普通的Maven模块 一、创建一个空工程 创建一个空的工程 * 设置整…

声音模拟训练

环境配置 参考文章: https://github.com/SUC-DriverOld/so-vits-svc-Chinese-Detaild-Documents 1:打开CMD nvidia-smi.exe 查询显卡 cuda VERSION:12.3 2:打开https://pytorch.org/get-started 我的系统是12.3 3:使用google 搜索 nvidia develope…

哈希概念 | 哈希函数 | 哈希冲突 | 哈希桶实现 | 哈希线性探测代码实现 | 闭散列 | 开散列 | 字符串哈希算法

文章目录 1.哈希概念2.哈希冲突3.解决哈希冲突3.1.闭散列3.2.开散列 4.字符串哈希算法 1.哈希概念 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。如果一个顺序结构&am…

80.网游逆向分析与插件开发-背包的获取-自动化助手显示物品数据1

内容参考于:易道云信息技术研究院VIP课 上一个内容:升级Notice类获得背包基址-CSDN博客 码云地址(ui显示角色数据 分支):https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号:3be017de38c50653b…

BGP:04 fake-as

使用 fake-as 可以将本地真实的 AS 编号隐藏,其他 AS 内的对等体在指定本端对等体所在的AS 编号时,应该设置成这个伪AS 编号。 这是实验拓扑,IBGP EBGP 邻居都使用物理接口来建立 基本配置: R1: sys sysname R1 int loo0 ip add…