【广度优先搜索】【拓扑排序】【C++算法】913. 猫和老鼠

作者推荐

【动态规划】【map】【C++算法】1289. 下降路径最小和 II

本文涉及知识点

广度优先搜索 拓扑排序 逆推

LeetCode913. 猫和老鼠

两位玩家分别扮演猫和老鼠,在一张 无向 图上进行游戏,两人轮流行动。
图的形式是:graph[a] 是一个列表,由满足 ab 是图中的一条边的所有节点 b 组成。
老鼠从节点 1 开始,第一个出发;猫从节点 2 开始,第二个出发。在节点 0 处有一个洞。
在每个玩家的行动中,他们 必须 沿着图中与所在当前位置连通的一条边移动。例如,如果老鼠在节点 1 ,那么它必须移动到 graph[1] 中的任一节点。
此外,猫无法移动到洞中(节点 0)。
然后,游戏在出现以下三种情形之一时结束:
如果猫和老鼠出现在同一个节点,猫获胜。
如果老鼠到达洞中,老鼠获胜。
如果某一位置重复出现(即,玩家的位置和移动顺序都与上一次行动相同),游戏平局。
给你一张图 graph ,并假设两位玩家都都以最佳状态参与游戏:
如果老鼠获胜,则返回 1;
如果猫获胜,则返回 2;
如果平局,则返回 0 。
示例 1:
输入:graph = [[2,5],[3],[0,4,5],[1,4,5],[2,3],[0,2,3]]
输出:0
示例 2:
输入:graph = [[1,3],[0],[3],[0,2]]
输出:1
提示:
3 <= graph.length <= 50
1 <= graph[i].length < graph.length
0 <= graph[i][j] < graph.length
graph[i][j] != i
graph[i] 互不相同
猫和老鼠在游戏中总是可以移动

广度优先搜索

状态表示: iCat 表示猫位置 iMouse表示老鼠位置 iTurn,表示是否是猫回合。
初始以下情况有确定结果:

  • 老鼠进洞,无论猫在那,谁的回合。
  • 猫抓住老鼠,在同一单格,猫抓到老鼠;老鼠送死。

之后以下情况有确定结果:
猫(老鼠)的回合,猫至少有一个后置状态胜利。猫胜利。
猫(老鼠)的回合,猫至所有的后置状态全部失败。猫失败。
类似与拓扑排序,所有的后置状态都已经确定,或有一个后置状态胜利。将当前状态加到处理队列。
一定不能重复处理,否则 计算全部后置状态会错误。
que 待处理队列。
dp各状态的结果
vNextCount 各状态的后置任务数,一个后置任务失败就减1,为0就失败。

代码

核心代码

class Solution {
public:
	int catMouseGame(vector<vector<int>>& graph) {
		m_c = graph.size();
		m_iMaskCount = m_c * m_c * 2;
		queue<int> que;//记录结果确定的状态 后续状态全失败,只会加一次。 后续状态胜利,需要判断重复。
		vector<int> dp(m_iMaskCount),vNextCount(m_iMaskCount);//dp[i]状态为i的结果 vNextCount[i]状态为i有多少种后续状态
		for (int i = 0; i < 2; i++)
		{
			for (int j = 1; j < m_c; j++)
			{
				dp[Mask(j, 0, i)] = 1;//老鼠进洞
				dp[Mask(j, j, i)] = 2;//猫抓住了老鼠
				que.emplace(Mask(j, 0, i));
				que.emplace(Mask(j, j, i));
			}
		}
		for (int iTurn = 0; iTurn < 2; iTurn++)
		{
			for (int iCat = 0; iCat < m_c; iCat++)
			{
				for (int iMouse = 0; iMouse < m_c; iMouse++)
				{
					vNextCount[Mask(iCat, iMouse, iTurn)] = graph[iTurn?iCat:iMouse].size();//如果猫行动,必须扣掉0
				}
			}
		}
		//扣掉猫进洞
		for (int iMouse = 0; iMouse < m_c; iMouse++)
		{
			for (const auto& next : graph[0])
			{
				vNextCount[Mask(next, iMouse,1)]--;
			}
		}
		while (que.size())
		{
			const int iMask = que.front();
			const auto [iCat, iMouse, bCatTrun] = Parse(iMask);			
			que.pop();
			const int iPreTurn = bCatTrun ^ 1;
			bool isWin[] = { 1 == dp[iMask],2 == dp[iMask] };
			for (const auto& prePos : graph[iPreTurn ? iCat : iMouse])
			{
				const int iPreCat = iPreTurn ? prePos : iCat;
				if (0 == iPreCat)
				{
					continue;
				}
				const int iPreMouse = iPreTurn ? iMouse : prePos;
				const int iPreMask = Mask(iPreCat, iPreMouse, iPreTurn);
				if (0 != dp[iPreMask])
				{
					continue;
				}
				const int ifWin = iPreTurn ? 2 : 1;
				if (isWin[iPreTurn] )
				{
					dp[iPreMask] = ifWin;
					que.emplace(iPreMask);
				}
				else
				{
					vNextCount[iPreMask]--;
					if (0 == vNextCount[iPreMask])
					{
						dp[iPreMask] = 3- ifWin;
						que.emplace(iPreMask);
					}
				}
			}
		}		
		return dp[Mask(2,1, false)];
	}
	inline int Mask(int iCat, int iMouse, bool bCatTrun)
	{
		return m_c * 2 * iCat + 2 * iMouse + bCatTrun;
	}
	inline std::tuple<int, int, bool> Parse(int iMask)
	{
		const bool bCatTrun = iMask % 2;
		iMask /= 2;
		return std::make_tuple(iMask / m_c, iMask % m_c, bCatTrun);
	}
	int m_iMaskCount;
	int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	vector<vector<int>> graph;
	{
		Solution sln;
		graph = { {2,5},{3},{0,4,5},{1,4,5},{2,3},{0,2,3} };
		auto res = sln.catMouseGame(graph);
		Assert(res, 0);
	}
	{
		Solution sln;
		graph = { {1,3},{0},{3},{0,2} };
		auto res = sln.catMouseGame(graph);
		Assert(res, 1);
	}
	{
		Solution sln;
		graph = { {2,3},{3,4},{0,4},{0,1},{1,2} };
		auto res = sln.catMouseGame(graph);
		Assert(res, 1);
	}
	

	


}

2023年1月版

class Solution {
public:
int catMouseGame(vector<vector>& graph) {
const int iCatWin = 2;
const int iMouseWin = 1;
const int iMouseTurn = 0;
const int iCatTurn = 1;
m_c = graph.size();
memset(m_dp, 0, sizeof(m_dp));
for (int cat = 0; cat < m_c; cat++)
{
for (int mouse = 0; mouse < m_c; mouse++)
{
m_NextStateNotDo[mouse][cat][iCatTurn] = graph[cat].size();
m_NextStateNotDo[mouse][cat][iMouseTurn] = graph[mouse].size();
}
}
//猫不能进入0洞
for (int mouse = 0; mouse < m_c; mouse++)
{
for (const int& pre0 : graph[0])
{
m_NextStateNotDo[mouse][pre0][iCatTurn] --;
}
}
vector vMaskCanFinish;
for (int i = 1; i < m_c; i++)
{
//相同位置,猫胜
m_dp[i][i][0] = iCatWin;
vMaskCanFinish.push_back(Mask(i, i, 0));
m_dp[i][i][1] = iCatWin;
vMaskCanFinish.push_back(Mask(i, i, 1));
//老鼠进洞
m_dp[0][i][0] = iMouseWin;
vMaskCanFinish.push_back(Mask(0,i, 0));
m_dp[0][i][1] = iMouseWin;
vMaskCanFinish.push_back(Mask(0,i, 1));
}
for (int i = 0; i < vMaskCanFinish.size(); i++)
{
int mouse, cat, iTrun;
ParseMask(mouse, cat, iTrun, vMaskCanFinish[i]);
int iPreTrun = (iTrun + 1) % 2;
if (iCatTurn == iPreTrun)
{
for (auto& pre : graph[cat])
{
if (0 == pre)
{
continue;
}
if (0 != m_dp[mouse][pre][iPreTrun])
{
continue;
}
m_NextStateNotDo[mouse][pre][iPreTrun]–;
if (iCatWin == m_dp[mouse][cat][iTrun])
{
m_dp[mouse][pre][iPreTrun] = iCatWin;
vMaskCanFinish.push_back(Mask(mouse, pre, iPreTrun));
continue;
}
if (0 == m_NextStateNotDo[mouse][pre][iPreTrun])
{
m_dp[mouse][pre][iPreTrun] = iMouseWin;
vMaskCanFinish.push_back(Mask( mouse,pre, iPreTrun));
}
}
}
else
{
for (auto& pre : graph[mouse])
{
if (0 != m_dp[pre][cat][iPreTrun])
{
continue;
}
m_NextStateNotDo[pre][cat][iPreTrun]–;
if (iMouseWin == m_dp[mouse][cat][iTrun])
{
m_dp[pre][cat][iPreTrun] = iMouseWin;
vMaskCanFinish.push_back(Mask(pre, cat, iPreTrun));
continue;
}
if (0 == m_NextStateNotDo[pre][cat][iPreTrun])
{
vMaskCanFinish.push_back(Mask(pre, cat, iPreTrun));
m_dp[pre][cat][iPreTrun] = iCatWin;
}
}
}
}
return m_dp[1][2][0];
}
inline int Mask(const int& mouse, const int& cat, const int& iTrun)
{
return mouse * m_c * 2 + cat * 2 + iTrun;
}
inline void ParseMask(int& mouse, int& cat, int& iTrun, int iMask)
{
mouse = iMask / m_c / 2;
iMask %= (m_c * 2);
cat = iMask / 2;
iTrun = iMask% 2;
}
int m_c;
int m_dp[50][50][2] ;
int m_NextStateNotDo[50][50][2];
};

2023年8月版

class Solution {
public:
int catMouseGame(vector<vector>& graph) {
m_c = graph.size();
std::set set0NeiBo(graph[0].begin(), graph[0].end());
vector vResult(m_cm_c2);
vector vPreMask(m_c * m_c2, -1);//下一种状态,调试用
std::queue que;//依次入队所有 具有结果的状态
for (int cat = 0; cat < m_c; cat++)
{
if (0 == cat)
{
continue;
}
{//老鼠移动到同一位置
const int iMask = Mask(1,cat, cat);
que.emplace(iMask);
vResult[iMask] = 1;
}
{//猫移动到同一位置
const int iMask = Mask(0,cat, cat);
que.emplace(iMask);
vResult[iMask] = -1;
}
{//老鼠进洞
const int iMask = Mask(1,0, cat);
que.emplace(iMask);
vResult[iMask] = -1;
}
{//进洞后,猫移动,当前回合:老鼠
const int iMask = Mask(0, 0, cat);
que.emplace(iMask);
vResult[iMask] = 1;
}
}
//当前回合,当前玩家可以移动的可能
vector vCanMoveNum(m_c * m_c * 2),vSucNum(m_c
m_c2);
for (int cat = 0; cat < m_c; cat++)
{
if (0 == cat)
{
continue;
}
for (int mouse = 0; mouse < m_c; mouse++)
{
const int iMouseNewMask = Mask(0, mouse, cat);//
vCanMoveNum[iMouseNewMask] = graph[mouse].size();
const int iCatNewMask = Mask(1, mouse, cat);//
vCanMoveNum[iCatNewMask] = graph[cat].size() - set0NeiBo.count(cat);
}
}
while (que.size())
{
const int mask = que.front();
const int curResutl = vResult[mask];
que.pop();
const auto [turn,mouse, cat] = ParseMask(mask);
if (mask== Mask(0,1,2))
{
return (1 == curResutl)? 1 : 2 ;
}
const int preTurn = (1 + turn) % 2;
const int player = (0 == preTurn) ? mouse : cat;
for (const int& move : graph[player])
{
if ((0 == move)&&(1== preTurn))
{//猫不能进洞
continue;
}
const int iPreMask = (0== preTurn) ? Mask(preTurn,move,cat) : Mask(preTurn,mouse,move);
if (- 1 == curResutl)
{
if (0 == vResult[iPreMask])
{
vResult[iPreMask] = 1;
que.emplace(iPreMask);
vPreMask[iPreMask] = mask;
}
continue;
}
vSucNum[iPreMask]–;
if (vCanMoveNum[iPreMask] == -vSucNum[iPreMask])
{
if (0 == vResult[iPreMask])
{
vResult[iPreMask] = -1;
que.emplace(iPreMask);
vPreMask[iPreMask] = mask;
}
}
}
}
return 0;
}
//Turn为0,改老鼠移动;1,猫移动;iMouseNode 移动前老鼠的位置;移动前,猫的位置
int Mask(int iTurn,int iMouseNode,int iCatNode)
{
return iTurn
m_c*m_c+iMouseNode * m_c + iCatNode;
}
std::tuple<int,int,int> ParseMask( int iMask)
{
return std::make_tuple<int, int,int>(iMask / m_c/m_c, iMask/m_c%m_c, iMask % m_c);
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/351946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python-分享篇-使用海龟turtle模块实现幸福大转盘

文章目录 准备代码效果 准备 一、根目录下放图片 代码 from turtle import * import turtle from random import randint import sys #屏幕初始化 screen turtle.Screen() screen.title("幸运大转盘 转转转~") screen.setup(480,450) screen.bgpic("转盘.png…

基于机器学习的地震预测(Earthquake Prediction with Machine Learning)

基于机器学习的地震预测&#xff08;Earthquake Prediction with Machine Learning&#xff09; 一、地震是什么二、数据组三、使用的工具和库四、预测要求五、机器学习进行地震检测的步骤六、总结 一、地震是什么 地震几乎是每个人都听说过或经历过的事情。地震基本上是一种自…

Android源码设计模式解析与实战第2版笔记(五)

第七章 时势造英雄 – 策略模式 策略模式的定义 策略模式定义了一系列的算法&#xff0c;并将每一个算法封装起来&#xff0c;而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化。 策略模式的使用场景 针对同一类型问题的多种处理方式&#xff0c;仅仅…

YOLOv8优化策略:轻量化改进 | RepGhost,通过重参数化实现硬件高效的Ghost模块

🚀🚀🚀本文改进:RepGhost,通过重参数化实现硬件高效的Ghost模块,性能优于GhostNet、MobileNetV3等,在移动设备上具有更少的参数和可比的延迟。 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1.原…

污水处理行业:环保远程控制网关S275引领行业变革

近年来&#xff0c;随着城镇工业的不断发展&#xff0c;污水处理厂在城市中扮演着重要角色。作为国家新兴战略产业之一的水处理行业也是蓬勃发展。如何节省成本、保证水质的稳定性和安全性&#xff0c;从而达到节能、减排、节水的目的是工厂考虑的重中之重。 案例 客户是一家…

雨云美国二区云服务器评测

雨云美国二区云服务器评测 官网直接百度搜索雨云就行 我买的时候比较便宜&#xff0c;三个月3.4元&#xff0c;1C1G对于我这种小网站来说够用了 本期测评服务器配置 CPU&#xff1a;1核 内存&#xff1a;1G 硬盘&#xff1a;Linux系统20G&#xff0c;win系统30G 流量&…

【数据结构与算法】之字符串系列-20240127

这里写目录标题 一、面试题 08.07. 无重复字符串的排列组合二、面试题 10.02. 变位词组三、面试题 17.11. 单词距离四、LCR 014. 字符串的排列五、LCR 020. 回文子串六、1528. 重新排列字符串 一、面试题 08.07. 无重复字符串的排列组合 中等 无重复字符串的排列组合。编写一种…

Deepin基本环境查看(四)【硬盘/分区、文件系统、硬连接/软连接】

Deepin基本环境查看 - 目录Deepin基本环境查看&#xff08;一&#xff09;【基本信息】Deepin基本环境查看&#xff08;二&#xff09;【内存】Deepin基本环境查看&#xff08;三&#xff09;【网络信息】Deepin基本环境查看&#xff08;四&#xff09;【硬盘/分区、文件系统、…

Python接口自动化框架设计到开发,赶紧用起来!

1.如何设计一个接口自动化测试框架 根据接口地址、接口类型、请求数据、预期结果来进行设计&#xff0c;对于需要登录后才能进行操作的接口那么则需要进行header cookie等数据的传递&#xff0c;自动化测试的难点就是数据依赖。 2.python操作excel获得内容 首先python操作exce…

Unity架构师进阶:红点系统的架构与设计

面试的时候经常被问道如何来设计一个红点系统,本文将详细地介绍如何设计一个红点系统&#xff0c;有哪些接口&#xff0c;并完整地给出实现。 红点系统的需求分析 首先我们来分析一下红点系统的设计需求: 红点系统严格意义上来说不属于框架&#xff0c;而是游戏逻辑&#xff…

某工业级剪纸包装机辐射整改实例

摘要 某一客户工业级剪纸包装机器出口欧洲需要做CE认证&#xff0c;其中一项需要符合EMC Directive 2004/108/EC里面的EN 61000-6-4:2007&#xff0c;其中就需要符合标准中的辐射发射限值要求。但是&#xff0c;在CE-EMC认证过程中&#xff0c;测试辐射发射出现不合格现象。关键…

设计模式_访问者模式_Visitor

案例引入 要求 测评系统需求&#xff1a;将观众分为男人和女人&#xff0c;对歌手进行测评&#xff0c;当看完某个歌手表演后&#xff0c;得到他们对该歌手不同的评价(比如 成功、失败 等) 传统方案 Man和Woman里面都有“成功”、“失败”的方法 【分析】 如果系统比较小&…

国民技术N32G430C8开发笔记一-新建IAR工程

一、创建IAR工程 1、新建工程&#xff0c;保存到project文件夹。 2、添加SDK到工程。 根据原厂SDK的文件结构在IAR新建相应分组&#xff0c;把各个文件夹的文件加载进去&#xff0c;其中startup文件选择IAR平台的startup_n32g430_EWARM.s。 3、添加头文件路径&#xff0…

Python编程 从入门到实践(项目二:数据可视化)

本篇为实践项目二&#xff1a;数据可视化。 配合文章python编程入门学习&#xff0c;代码附文末。 项目二&#xff1a;数据可视化 1.生成数据1.1 安装Matplotlib1.2 绘制简单的折线图1.2.1 修改标签文字和线条粗细1.2.2 校正图形1.2.3 使用内置样式1.2.4 使用scatter()绘制散点…

Asp.Net Core 获取应用程序相关目录

在ASP.NET Core中&#xff0c;可以通过以下三种方式获取应用程序所在目录&#xff1a; 1、使用AppContext.BaseDirectory属性&#xff1a; string appDirectory AppContext.BaseDirectory; 例如&#xff1a;D:\后端项目\testCore\test.WebApi\bin\Debug\net6.0\ 2、使用…

IDEA 安装阿里Java编码规范插件

1.File>Settings 2.安装之后重启 开发过程中如果有不符合规范的地方&#xff0c;会自动出现提示

侯捷《C++标准11-14》笔记

P2: 模板编程中的… 模板编程时&#xff0c;“…”表示可以接受任意数量和类型的参数&#xff0c;具有极大的灵活性。函数调用时&#xff0c;参数个数不定会被分解成一包一包的参数传入。从而通过递归把不定个数的参数一一分解。 #include <iostream> using namespace …

vit细粒度图像分类(二)SwinFC 学习笔记

1.摘要&#xff1a; 针对细粒度图像类间差异小、类内差异大等问题&#xff0c;提出了一种基于Swin及多尺度特征融合的模型&#xff08;SwinFC&#xff09;。 基准骨干网络采用具有多阶段层级架构设计的Swin Transformer模型作为全新视觉特征提取器&#xff0c;从中获取局部和全…

【CentOS】Linux 文件权限与权限修改

目录 1、Linux 中的文件属性 2、如何修改文件属性与权限 3、目录权限与文件权限的区别 4、Linux 中的文件扩展名 用户与用户组是Linux文件权限的重要组成部分。 首先&#xff0c;一定要明确用户与用户组的概念&#xff1a; Linux 一般将文件可读写的身份分为三个类别&#…

Redis 击穿、穿透、雪崩产生原因解决思路

大家都知道&#xff0c;计算机的瓶颈之一就是IO&#xff0c;为了解决内存与磁盘速度不匹配的问题&#xff0c;产生了缓存&#xff0c;将一些热点数据放在内存中&#xff0c;随用随取&#xff0c;降低连接到数据库的请求链接,避免数据库挂掉。需要注意的是&#xff0c;无论是击穿…