探索Pyecharts之美-绘制多彩旭日图的艺术与技巧【第37篇—python:旭日图】

文章目录

    • 引言
    • 准备工作
    • 绘制基本旭日图
    • 调整颜色和样式
    • 添加交互功能
    • 定制标签和标签格式
    • 嵌套层级数据
    • 高级样式与自定义
    • 进阶主题:动态旭日图
    • 数据源扩展:外部JSON文件
    • 总结

引言

数据可视化在现代编程中扮演着重要的角色,而Pyecharts是Python中一个强大的图表库,可以轻松实现各种炫酷的数据可视化效果。其中,旭日图是一种展示层次结构数据的理想选择,通过不同的颜色和半径呈现数据的层级和关系。在本篇技术博客中,我们将深入探讨Pyecharts中绘制旭日图的多种参数,同时提供实用的代码示例,帮助你更好地利用这一功能。
在这里插入图片描述

准备工作

在开始之前,请确保你已经安装了Pyecharts库。如果没有安装,可以使用以下命令进行安装:

pip install pyecharts

绘制基本旭日图

首先,我们从最基本的旭日图开始,使用Pyecharts的Sunburst类。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {"name": "A", "value": 10},
        {"name": "B", "value": 20},
        {"name": "C", "value": 15},
        {"name": "D", "value": 25},
    ],
}

sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"])
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="基本旭日图"))
sunburst.render("basic_sunburst.html")

在上述代码中,我们定义了一个简单的层级结构数据,然后使用Sunburst类绘制了基本的旭日图。radius参数用于设置旭日图的半径范围。
在这里插入图片描述

调整颜色和样式

为了让旭日图更具吸引力,我们可以调整颜色和样式。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {"name": "A", "value": 10},
        {"name": "B", "value": 20},
        {"name": "C", "value": 15},
        {"name": "D", "value": 25},
    ],
}

sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(
    title_opts=opts.TitleOpts(title="调整颜色和样式"),
    legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("styled_sunburst.html")

在这个例子中,我们使用了color_scheme参数来指定颜色方案,并通过legend_opts隐藏了图例。

添加交互功能

为了增强用户体验,我们可以添加一些交互功能,如数据提示和缩放。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {"name": "A", "value": 10},
        {"name": "B", "value": 20},
        {"name": "C", "value": 15},
        {"name": "D", "value": 25},
    ],
}

sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(
    title_opts=opts.TitleOpts(title="添加交互功能"),
    legend_opts=opts.LegendOpts(is_show=False),
    tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{b}: {c}"),
    toolbox_opts=opts.ToolboxOpts(is_show=True, feature={"saveAsImage": {}}),
)
sunburst.render("interactive_sunburst.html")

在这个例子中,我们通过tooltip_opts添加了数据提示,toolbox_opts增加了保存为图片的功能。

定制标签和标签格式

在旭日图中,标签对于传达信息非常重要。我们可以通过label_opts参数来定制标签的样式和格式。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {"name": "A", "value": 10},
        {"name": "B", "value": 20},
        {"name": "C", "value": 15},
        {"name": "D", "value": 25},
    ],
}

sunburst = Sunburst()
sunburst.add(
    "",
    data['children'],
    radius=[0, "90%"],
    color_scheme="purple",
    label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(
    title_opts=opts.TitleOpts(title="定制标签和标签格式"),
    legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("custom_label_sunburst.html")

在上述代码中,我们使用了label_opts参数来设置标签的格式和位置,通过formatter来自定义标签的显示内容。

嵌套层级数据

如果你的数据包含多个层级,你可以通过嵌套的方式表示。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {
            "name": "A",
            "children": [
                {"name": "A1", "value": 10},
                {"name": "A2", "value": 20},
            ],
        },
        {
            "name": "B",
            "children": [
                {"name": "B1", "value": 15},
                {"name": "B2", "value": 25},
            ],
        },
    ],
}

sunburst = Sunburst()
sunburst.add("", data['children'], radius=[0, "90%"], color_scheme="purple")
sunburst.set_global_opts(
    title_opts=opts.TitleOpts(title="嵌套层级数据"),
    legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("nested_sunburst.html")

在这个例子中,我们通过嵌套层级的方式,更好地表达了数据之间的关系。
在这里插入图片描述

高级样式与自定义

如果你需要更高级的样式和自定义,可以进一步使用Pyecharts提供的丰富功能,如渐变色、阴影效果等。

from pyecharts import options as opts
from pyecharts.charts import Sunburst

data = {
    "name": "root",
    "children": [
        {"name": "A", "value": 10},
        {"name": "B", "value": 20},
        {"name": "C", "value": 15},
        {"name": "D", "value": 25},
    ],
}

sunburst = Sunburst()
sunburst.add(
    "",
    data['children'],
    radius=[0, "90%"],
    color_scheme="purple",
    label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
    itemstyle_opts=opts.ItemStyleOpts(
        border_color="white",
        border_width=1,
        opacity=0.7,
        shadow_blur=10,
        shadow_color="rgba(120, 36, 50, 0.5)",
    ),
)
sunburst.set_global_opts(title_opts=opts.TitleOpts(title="高级样式与自定义"))
sunburst.render("advanced_sunburst.html")

在这个例子中,我们通过itemstyle_opts参数实现了边框、透明度和阴影效果的自定义。
在这里插入图片描述

进阶主题:动态旭日图

在一些场景下,我们希望展示数据的动态变化,这时候可以借助Pyecharts的Timeline组件,创建一个动态的旭日图。

from pyecharts import options as opts
from pyecharts.charts import Sunburst, Timeline

# 模拟多个时间点的数据
data_timeline = [
    {
        "time": "2023-01-01",
        "data": {
            "name": "root",
            "children": [
                {"name": "A", "value": 15},
                {"name": "B", "value": 25},
                {"name": "C", "value": 20},
                {"name": "D", "value": 30},
            ],
        },
    },
    # 添加更多时间点的数据...
]

timeline = Timeline()

for time_data in data_timeline:
    sunburst = Sunburst()
    sunburst.add(
        "",
        time_data['data']['children'],
        radius=[0, "90%"],
        color_scheme="purple",
        label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
    )
    sunburst.set_global_opts(
        title_opts=opts.TitleOpts(title=f"动态旭日图 - {time_data['time']}"),
        legend_opts=opts.LegendOpts(is_show=False),
    )
    timeline.add(sunburst, time_data['time'])

timeline.render("dynamic_sunburst.html")

在这个例子中,我们使用了Timeline组件,根据不同时间点的数据绘制了一系列动态的旭日图。这是一个强大的工具,使得你可以清晰地展示数据在时间轴上的演变过程。

数据源扩展:外部JSON文件

当数据较为庞大或需要动态加载时,可以将数据存储在外部JSON文件中,并通过读取文件的方式进行数据绑定。

import json
from pyecharts import options as opts
from pyecharts.charts import Sunburst

# 从外部JSON文件读取数据
with open("data.json", "r", encoding="utf-8") as f:
    external_data = json.load(f)

sunburst = Sunburst()
sunburst.add(
    "",
    external_data['children'],
    radius=[0, "90%"],
    color_scheme="purple",
    label_opts=opts.LabelOpts(formatter="{b}: {c}", position="inside"),
)
sunburst.set_global_opts(
    title_opts=opts.TitleOpts(title="外部JSON文件数据展示"),
    legend_opts=opts.LegendOpts(is_show=False),
)
sunburst.render("external_data_sunburst.html")

在上述代码中,我们通过json.load方法读取了外部JSON文件中的数据,然后将其传递给Sunburst图表进行绘制。

总结

通过本文,你学会了如何使用Pyecharts绘制多种炫酷的旭日图,并深入了解了各种参数的用法。无论是基本的图形绘制,还是高级的样式定制,Pyecharts都提供了强大而灵活的工具,助力你创建令人印象深刻的数据可视化图表。希望这篇文章对你在数据可视化的学习和实践中有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/351889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Tomcat怎么优化

目录 性能方面的优化: 安全方面的优化: 引言:面试官问到的Tomcat怎么优化,这两个方面直接得到他认可!! 性能方面的优化: 内存优化:-Xms java虚拟机初始化时的最小内存、-Xmx java虚…

操作系统的引入

操作系统 【1】什么是操作系统 操作系统是一种管理的计算机硬件的软件资源的程序。它充当了计算机系统和应用程序之间的接口。使得计算机用户能够地使用计算机系统来完成各种任务。操作系统是负责管理和分配计算机的处理器、内存、硬盘等等硬件资源,同时也提供一些…

Vue3在css中使用v-bind绑定js/ts变量,也可以在scss和less中使用方式

主要介绍Vue3中的新增的v-bind()的常用使用方式,主要包括在css,less,scss中的使用,可以参考官方文档查看:Vue3官方文档 特别提醒 如果你想在scss中或者less中使用,可能会报各种乱七八糟的错误,最快最好用的方式就是单…

Android P 背光机制流程分析

在android 9.0中,相比android 8.1而言,背光部分逻辑有较大的调整,这里就对android P背光机制进行完整的分析。 1.手动调节亮度 1.1.在SystemUI、Settings中手动调节 在界面(SystemUI)和Settings中拖动进度条调节亮度时,调节入口…

[docker] Docker的私有仓库部署——Harbor

一、Docker原生私有仓库—— Registry 1.1 Registry的简单了解 关于Docker的仓库分为私有库和公有仓库,共有仓库只要在官方注册用户,登录即可使用。但对于仓库的使用,企业还是会有自己的专属镜像,所以私有库的搭建也是很有必要的…

那些年与指针的爱恨情仇(一)---- 指针本质及其相关性质用法

关注小庄 顿顿解馋 (≧∇≦) 引言: 小伙伴们在学习c语言过程中是否因为指针而困扰,指针简直就像是小说女主,它逃咱追,我们插翅难飞…本篇文章让博主为你打理打理指针这个傲娇鬼吧~ 本节我们将认识到指针本质,何为指针和…

将Html页面转换为Wordpress页面

问题:我们经常会从html源码下载网站上获得我们想要的网站内容框架,以及部分诸如联系我们,About 等内页,但是在文章的发布上,则远不如Wordpress简便。而Wordpress尽管有各种模板,但修改又比较麻烦。解决方法…

day34WEB 攻防-通用漏洞文件上传黑白盒审计逻辑中间件外部引用

目录 一,白盒审计-Finecms-代码常规-处理逻辑 黑盒思路:寻找上传点抓包修改突破获取状态码及地址 审计流程:功能点-代码文件-代码块-抓包调试-验证测试 二,白盒审计-CuppaCms-中间件-.htaccess 三,白盒审计-Metin…

CVE-2024-23897 Jenkins 任意文件读取漏洞

项目介绍 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件项目可以进行持续集成。Jenkins是开源CI&CD软件领导者, 提供超过1000个插…

guhub访问

问题 访问不了guhub 解决过程 可以正常访问了 总结 此方法参考微软官方的方法,修改dns服务器网址,由原本的自动分配改为指定微软dns服务器网址

深度强化学习(王树森)笔记02

深度强化学习(DRL) 本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL 源代码链接:https://github.c…

苹果手机突然无服务了,这是怎么回事?

苹果手机无疑是一款备受青睐的智能设备,但有时候我们可能会面临一个令人困扰的情况——苹果手机突然无服务。这种情况可能会在任何时候发生,无论是在使用手机时,刚刚升级系统,或者是突然发现在本应有信号的区域却无法连接到运营商…

Linux——常用命令

1、命令的基本格式 对服务器来讲,图形界面会占用更多的系统资源,而且会安装更多的服务、开放更多的端口,这对服务器的稳定性和安全性都有负面影响。其实,服务器是一个连显示器都没有的家伙,要图形界面干什么&#xff…

Nodejs基础4之fs模块的批量重命名练习、path模块、HTTP协议

Nodejs基础 fs模块fs练习-批量重命名fs练习-批量排序重命名 path模块resolve 解决sep 分隔符parse 方法其他的几个方法 HTTP协议http报文安装fiddler软件配置fiddler使用fiddler 请求报文结构整体请求行请求方法URLHTTP版本号 请求头请求体 响应报文结构整体响应行响应状态码响…

用甘特图有效管理多个项目进度

当公司或组织同时承担多个项目时,合理规划各项目的时间节点与资源分配对确保高效完成至关重要。采用甘特图可以直观地展示多个项目的时间进程、关键里程碑以及资源分配情况,便于从宏观层面全面把控各项目的动态。 在线甘特图软件 zz-plan.com 提供了非常强大的时间轴规划功能,支…

14、Kafka ------ kafka 核心API 之 流API(就是把一个主题的消息 导流 到另一个主题里面去)

目录 kafka 核心API 之 流APIKafka流API的作用:流API的核心API:使用流API编程的大致步骤如下:代码演示 流API 用法MessageStream 流API 代码演示消息从 test1主题 导流到 test2主题演示使用匿名内部类对消息进行处理Topology 拓扑结构 讲解 代…

程序员该懂的一些测试(二)单元测试与集成测试

集成测试才是目的 单元测试只是对每个小模块进行的测试,可以理解成每次提交的一个小功能。 最终系统的良好运行依赖于这些小模块之间良好协作。所以需要有集成测试 集成测试回滚数据,保证测试的可重复性 我们可以把 ApplicationContext 理解成 DI 容器…

Transformer and Pretrain Language Models3-6

Pretrain Language Models预训练语言模型 content: language modeling(语言模型知识) pre-trained langue models(PLMs)(预训练的模型整体的一个分类) fine-tuning approaches GPT and BERT(…

【探索科技 感知未来】文心一言大模型

【探索科技 感知未来】文心大模型 🚩本文介绍 文心一言大模型是由中国科技巨头百度公司研发的一款大规模语言模型,其基于先进的深度学习技术和海量数据训练而成。这款大模型具备强大的自然语言处理能力,可以理解并生成自然语言,为…

JVM-字节码应用

一、字节码的应用远超你的想象 二、ASM介绍与读取字节码实战 用CoreAPI解析和TreeAPI都能做字节码解析,区别,TreeAPI必须读取完整字节码信息,才能做解析。 下面代码,使用CoreAPI做解析: package asm;public class MyM…