批量数据之DataX数据同步

文章目录

  • 1 DataX
    • 1.1 引言
    • 1.2 DataX 简介
    • 1.3 核心
      • 1.3.1 DataX3.0 框架设计
      • 1.3.2 DataX3.0 核心架构
    • 1.4 使用 DataX 实现数据同步
      • 1.4.1 准备安装
      • 1.4.2 Linux 上安装 DataX 软件
      • 1.4.3 DataX 基本使用
      • 1.4.4 MySQL 数据库
        • 1.4.4.1 安装
        • 1.4.4.2 准备同步
        • 1.4.4.3 创建存储过程:
      • 1.4.5 通过 DataX 实 MySQL 数据同步
        • 1.4.5.1 生成 MySQL 到 MySQL 同步的模板:
        • 1.4.5.2 编写 json 文件
        • 1.4.5.3 验证
      • 1.4.6 使用 DataX 进行增量同步
        • 1.4.6.1 编写 json 文件
        • 1.4.6.2 验证

1 DataX

1.1 引言

有个项目的数据量高达五千万,但是因为报表那块数据不太准确,业务库和报表库又是跨库操作,所以并不能使用 SQL 来进行同步。当时的打算是通过 mysqldump 或者存储的方式来进行同步,但是尝试后发现这些方案都不切实际:

  • mysqldump:不仅备份需要时间,同步也需要时间,而且在备份的过程,可能还会有数据产出(也就是说同步等于没同步)
  • 存储方式:这个效率太慢了,要是数据量少还好,我们使用这个方式的时候,三个小时才同步两千条数据

常见数据异构的几款中间件的区别如下:

CanalDebeziumDataXDatabusFlinkxBifrost
实时同步支持支持不支持支持支持支持
增量同步支持支持不支持支持支持支持
写业务逻辑自己写保存变更数据的代码自己写保存变更数据的代码不用写自己写保存变更数据的代码自己写保存变更数据的代码不用写
支持MySQL支持支持支持支持支持支持
活跃度不高一般可以

1.2 DataX 简介

DataX 是阿里云 DataWorks 数据集成 的开源版本,主要就是用于实现数据间的离线同步。 DataX 致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等 各种异构数据源(即不同的数据库) 间稳定高效的数据同步功能。

图片
为了解决异构数据源同步问题,DataX 将复杂的网状同步链路变成了星型数据链路 ,DataX 作为中间传输载体负责连接各种数据源;
当需要接入一个新的数据源时,只需要将此数据源对接到 DataX,便能跟已有的数据源作为无缝数据同步。

1.3 核心

1.3.1 DataX3.0 框架设计

DataX 采用 Framework + Plugin 架构,将数据源读取和写入抽象称为 Reader/Writer 插件,纳入到整个同步框架中。
在这里插入图片描述

角色作用
Reader(采集模块)负责采集数据源的数据,将数据发送给 Framework。
Writer(写入模块)负责不断向 Framework 中取数据,并将数据写入到目的端。
Framework(中间商)负责连接 Reader 和 Writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

1.3.2 DataX3.0 核心架构

DataX 完成单个数据同步的作业,我们称为 JobDataX 接收到一个 Job 后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分、TaskGroup 管理等功能。
在这里插入图片描述

  • DataX Job 启动后,会根据不同源端的切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。
  • 接着 DataX Job 会调用 Scheduler 模块,根据配置的并发数量,将拆分成的 Task 重新组合,组装成 TaskGroup(任务组)
  • 每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader --> Channel --> Writer 线程来完成任务同步工作
  • DataX 作业运行启动后,Job 会对 TaskGroup 进行监控操作,等待所有 TaskGroup 完成后,Job 便会成功退出(异常退出时 值非 0 )

DataX 调度过程:

  • 首先 DataX Job 模块会根据分库分表切分成若干个 Task,然后根据用户配置并发数,来计算需要分配多少个 TaskGroup
  • 计算过程:Task / Channel = TaskGroup,最后由 TaskGroup 根据分配好的并发数来运行 Task(任务)

1.4 使用 DataX 实现数据同步

1.4.1 准备安装

准备工作:

  • JDK(1.8 以上,推荐 1.8)
  • Python(2,3 版本都可以)
  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)
主机名操作系统IP 地址软件包
MySQL-1CentOS 7.4192.168.1.1jdk-8u181-linux-x64.tar.gz datax.tar.gz
MySQL-2CentOS 7.4192.168.1.2

因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

1.4.2 Linux 上安装 DataX 软件

[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/
[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*      # 需要删除隐藏文件 (重要)

当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件

验证:

[root@MySQL-1 ~]# cd /usr/local/datax/bin
[root@MySQL-1 ~]# python datax.py ../job/job.json       # 用来验证是否安装成功

输出:

2021-12-13 19:26:28.828 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-13 19:26:28.829 [job-0] INFO  StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.060s |  All Task WaitReaderTime 0.068s | Percentage 100.00%
2021-12-13 19:26:28.829 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-13 19:26:18
任务结束时刻                    : 2021-12-13 19:26:28
任务总计耗时                    :                 10s
任务平均流量                    :          253.91KB/s
记录写入速度                    :          10000rec/s
读出记录总数                    :              100000
读写失败总数                    :                   0

1.4.3 DataX 基本使用

查看 streamreader --> streamwriter 的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter
输出:

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the streamreader document:
     https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 

Please refer to the streamwriter document:
     https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [], 
                        "sliceRecordCount": ""
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "", 
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

根据模板编写 json 文件

[root@MySQL-1 ~]# cat <<END > test.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [        # 同步的列名 (* 表示所有)
       {
           "type":"string",
    "value":"Hello."
       },
       {
           "type":"string",
    "value":"河北彭于晏"
       },
   ], 
                        "sliceRecordCount": "3"     # 打印数量
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "utf-8",     # 编码
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)
            }
        }
    }
}

1.4.4 MySQL 数据库

1.4.4.1 安装

下面是安装mariadb 数据库,点击了解Linux安装MySQL数据库

分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb            # 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation            # 初始化 
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB
      SERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!

Enter current password for root (enter for none):       # 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                            # 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..
 ... Success!
Remove anonymous users? [Y/n] y                     # 移除匿名用户
 ... skipping.
Disallow root login remotely? [Y/n] n                # 允许 root 远程登录
 ... skipping.
Remove test database and access to it? [Y/n] y         # 移除测试数据库
 ... skipping.
Reload privilege tables now? [Y/n] y                    # 重新加载表
 ... Success!
1.4.4.2 准备同步

准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)

因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;
1.4.4.3 创建存储过程:
DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;

调用存储过程(在数据源配置,验证同步使用):call test();

1.4.5 通过 DataX 实 MySQL 数据同步

1.4.5.1 生成 MySQL 到 MySQL 同步的模板:
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",       # 读取端
                    "parameter": {
                        "column": [],         # 需要同步的列 (* 表示所有的列)
                        "connection": [
                            {
                                "jdbcUrl": [],       # 连接信息
                                "table": []       # 连接表
                            }
                        ], 
                        "password": "",        # 连接用户
                        "username": "",        # 连接密码
                        "where": ""         # 描述筛选条件
                    }
                }, 
                "writer": {
                    "name": "mysqlwriter",       # 写入端
                    "parameter": {
                        "column": [],         # 需要同步的列
                        "connection": [
                            {
                                "jdbcUrl": "",       # 连接信息
                                "table": []       # 连接表
                            }
                        ], 
                        "password": "",        # 连接密码
                        "preSql": [],         # 同步前. 要做的事
                        "session": [], 
                        "username": "",        # 连接用户 
                        "writeMode": ""        # 操作类型
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""          # 指定并发数
            }
        }
    }
}
1.4.5.2 编写 json 文件
[root@MySQL-1 ~]# vim install.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader", 
                    "parameter": {
                        "username": "root",
                        "password": "123123",
                        "column": ["*"],
                        "splitPk": "ID",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"
                                ], 
                                "table": ["t_member"]
                            }
                        ]
                    }
                }, 
                "writer": {
                    "name": "mysqlwriter", 
                    "parameter": {
                        "column": ["*"], 
                        "connection": [
                            {
                                "jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8",
                                "table": ["t_member"]
                            }
                        ], 
                        "password": "123123",
                        "preSql": [
                            "truncate t_member"
                        ], 
                        "session": [
                            "set session sql_mode='ANSI'"
                        ], 
                        "username": "root", 
                        "writeMode": "insert"
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "5"
            }
        }
    }
}
1.4.5.3 验证
[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json
输出:

2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0

上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;
所以在有些情况下,增量同步还是重要的。

1.4.6 使用 DataX 进行增量同步

使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选(即,同步筛选后的 SQL)

1.4.6.1 编写 json 文件
[root@MySQL-1 ~]# vim where.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader", 
                    "parameter": {
                        "username": "xxxx",
                        "password": "xxxx",
                        "column": ["*"],
                        "splitPk": "ID",
                        "where": "ID <= 1888",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"
                                ], 
                                "table": ["t_member"]
                            }
                        ]
                    }
                }, 
                "writer": {
                    "name": "mysqlwriter", 
                    "parameter": {
                        "column": ["*"], 
                        "connection": [
                            {
                                "jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8",
                                "table": ["t_member"]
                            }
                        ], 
                        "password": "xxxx",
                        "preSql": [
                            "truncate t_member"
                        ], 
                        "session": [
                            "set session sql_mode='ANSI'"
                        ], 
                        "username": "xxxx", 
                        "writeMode": "insert"
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "5"
            }
        }
    }
}

需要注意的部分就是:where(条件筛选) 和 preSql(同步前,要做的事) 参数。

1.4.6.2 验证
[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json
输出:

2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/351374.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C# 设置一个定时器函数

C#中&#xff0c;创建设置一个定时器&#xff0c;能够定时中断执行特定操作&#xff0c;可以用于发送心跳、正计时和倒计时等。 本文对C#的定时器简单封装一下&#xff0c;哎&#xff0c;以方便定时器的创建。 定义 using Timer System.Timers.Timer;class SetTimer {Timer …

Nginx编译安装以及负载均衡配置(Ubuntu 22.04)

目录 Nginx编译安装以及负载均衡配置 Ubuntu 22.04.1 LTS 编译安装 nginx-1.22.1 1.安装依赖包 2. 下载nginx 3. 编译安装 报错解决 解决问题2 4.安装 5启动Nginx&#xff1a; 负载均衡 负载均衡算法 轮询 加权负载均衡 ip_hash算法 算法进行配置演示 加权负载均衡 轮询 IP 哈希…

如何提高记忆力?

许多学员经常问我&#xff1a;为什么您的记忆力那么好&#xff1f;有没有什么方法&#xff0c;可以提高记忆力&#xff1f; 今天&#xff0c;我想好好聊聊这个问题。 当然&#xff0c;学习和记忆&#xff0c;是一个巨大的话题。这篇文章只是一个初探。希望能帮你打开一些视野&a…

IPoE技术汇总

在国内并没有遇到这么多的IPoE&#xff08;IP over Ethernet&#xff09;技术&#xff0c;可能也是因为我来日本多年了&#xff0c;没有接触国内的IPv4 over IPv6的技术&#xff0c;感觉国内IPv4地址紧张&#xff0c;用的传统NAT和PPPoE非常多&#xff0c;大多数设备还是建立在…

好物周刊#38:在线图片处理

https://github.com/cunyu1943/JavaPark https://yuque.com/cunyu1943 村雨遥的好物周刊&#xff0c;记录每周看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;每周五发布。 一、项目 1. AiEditor 一个面向 AI 的下一代富文本编辑器&#xff0c;她基于 Web C…

8通液体水位检测IC/液位检测芯片/抗干扰水位检测VK36W8I SOP16/QFN16L FAE支持

产品型号&#xff1a;VK36W8I 产品品牌&#xff1a;永嘉微电/VINKA 封装形式&#xff1a;SOP16/QFN16L 工程服务&#xff0c;技术支持&#xff01; 概述 VK36W8I具有8个触摸检测通道&#xff0c;可用来检测8个点的水位。该芯片具有较高的集成度&#xff0c;仅需极少的外部组…

2024 高级前端面试题之 CSS 「精选篇」

该内容主要整理关于 CSS 的相关面试题&#xff0c;其他内容面试题请移步至 「最新最全的前端面试题集锦」 查看。 CSS模块精选篇 1. 盒模型2. BFC3. 层叠上下文4. 居中布局5. 选择器权重计算方式6. 清除浮动7. link 与 import 的区别8. CSS3的新特性9. CSS动画和过渡10. 有哪些…

目录操作(实现ls -i的功能(加一个文件类型))

1》打开目录 opendir #include <sys/types.h> #include <dirent.h> DIR *opendir(const char *name); 形参&#xff1a;name&#xff1a;要打开的目录的路径/名字 返回值&#xff1a;成功DIR *类型的目录流指针 失败&#xff1a;返回NULL 2》关闭目录 closedir #…

万界星空科技可视化数据大屏的作用

随着科技的不断发展和进步&#xff0c;当前各种数据化的设备也是如同雨后春笋般冒了出来&#xff0c;并且其可以说是给我们带来了极大的便利的。在这其中&#xff0c;数据大屏就是非常具有代表性的一个例子。 数据大屏的主要作用包括&#xff1a; 数据分析&#xff1a;数据大屏…

一些反序列化总结

1 反序列化漏洞原理 如果反序列化的内容就是那串字符串&#xff0c;是用户可以控制的&#xff08;即变量的值&#xff09;&#xff0c;且后台不正当的使用了PHP中的魔法函数&#xff0c;就会导致反序列化漏洞&#xff0c;可以执行任意命令。Java 序列化指 Java 对象转换为字节序…

插入排序和希尔排序

. 个人主页&#xff1a;晓风飞 专栏&#xff1a;数据结构|Linux|C语言 路漫漫其修远兮&#xff0c;吾将上下而求索 文章目录 插入排序基本思想&#xff1a;代码实现&#xff1b; 希尔排序基本思想&#xff1a;在这里插入图片描述多组并排优化《数据结构(C语言版)》--- 严蔚敏希…

Golang中make与new有何区别

&#x1f4d5;作者简介&#xff1a; 过去日记&#xff0c;致力于Java、GoLang,Rust等多种编程语言&#xff0c;热爱技术&#xff0c;喜欢游戏的博主。 &#x1f4d7;本文收录于go进阶系列&#xff0c;大家有兴趣的可以看一看 &#x1f4d8;相关专栏Rust初阶教程、go语言基础系…

Typora 无法导出 pdf 问题的解决

目录 问题描述 解决困难 解决方法 问题描述 Windows 下&#xff0c;以前&#xff08;Windows 11&#xff09; Typora 可以顺利较快地由 .md 导出 .pdf 文件&#xff0c;此功能当然非常实用与重要。 然而&#xff0c;有一次电脑因故重装了系统&#xff08;刷机&#xff09;…

Armv8-M的TrustZone技术之SAU寄存器总结

每个SAU寄存器是32位宽。下表显示了SAU寄存器概要。 5.1 SAU_CTRL register SAU_CTRL寄存器的特征如下图和表所示&#xff1a; 5.2 SAU_TYPE register 5.3 SAU_RNR register 5.4 SAU_RBAR register 5.5 SAU_RLAR register 5.6 SAU区域配置 当SAU启用时&#xff0c;未由已启用…

Android 基础技术——RecyclerView

笔者希望做一个系列&#xff0c;整理 Android 基础技术&#xff0c;本章是关于 RecyclerView RecyclerView 对比 ListView 的优点 Adapter 面向的是 ViewHolder 不是 View, 可以省略 convertView.setTag 和 getTag 这些步骤可以设置布局管理器&#xff1a;竖向、横向、瀑布流方…

RUST笔记:candle使用基础

candle介绍 candle是huggingface开源的Rust的极简 ML 框架。 candle-矩阵乘法示例 cargo new myapp cd myapp cargo add --git https://github.com/huggingface/candle.git candle-core cargo build # 测试&#xff0c;或执行 cargo ckeckmain.rs use candle_core::{Device…

惊了!用vue开发官网,以前我觉得胡闹,现在觉得未尝不可。

以前&#xff0c;有人做好官网UI&#xff08;展示性&#xff0c;没啥功能&#xff09;&#xff0c;找我开发前端&#xff0c;说要vue来做&#xff0c;我都劝了。 基于以下四个原因&#xff1a; 1、官网毕竟还是考虑seo的&#xff0c;流量多少算多少&#xff0c;总比没有强&am…

Doris 与 Clickhouse 对比(一)

1. 常用引擎 ☕️ Doris 表数据模型 duplicate key &#x1f3ac; 场景&#xff1a;适用于数据无需提前聚合的分析业务。 ⚠️ 注意点&#xff1a;只指定排序列&#xff0c;相同的行并不会合并。 unique key &#x1f3ac; 场景&#xff1a;适用于有更新需求的业务。 ⚠…

Flink 集成 Debezium Confluent Avro ( format=debezium-avro-confluent )

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维…

数据结构——链式二叉树(2)

目录 &#x1f341;一、二叉树的销毁 &#x1f341;二、在二叉树中查找某个数&#xff0c;并返回该结点 &#x1f341;三、LeetCode——检查两棵二叉树是否相等 &#x1f315;&#xff08;一&#xff09;、题目链接&#xff1a;100. 相同的树 - 力扣&#xff08;LeetCode&a…