数据分析的理念、流程、方法、工具(上)

一、数据的价值

1、数据驱动企业运营

从电商平台的「猜你喜欢」到音乐平台的「心动模式」,大数据已经渗透到了我们生活的每一个场景。不论是互联网行业,还是零售业、制造业等,各行各业都在依托互联网大数据(数据采集、数据存储、数据处理、数据挖掘、数据分析、数据呈现)实现企业价值。

企业中数据从产生到应用依次要经过数据源层、数据仓库层、数据建模层,最后到数据应用层,经过层层加工逐渐支持到上游的应用环节。
IMG_256
数据应用层是数据产生价值的出口,通过数据挖掘、用户画像建模、推荐算法的制定,可实现千人千面的个性化内容推荐。「个性化」内涵是内容与用户的高度匹配,以达到提升体验、提升高黏性、促进销售转化的目的。

2、数据驱动产品运营

数据分析对业务发展、产品优化、精细化运营也起到了关键支持。

数据驱动产品、数据驱动运营的关键在于「可以通过数据分析提出产品优化思路,提出运营提升的举措,快速上线验证效果,重新优化,进入新的增长循环」。

数据运营的关键应用场景有:

评估产品改版(新功能)效果

发现产品改进关键点

构建用户画像,以便开展精细化运营

优化用户体验

发现业务运营中存在的问题

运营效果分析、ROI分析

数据总结与向上汇报

二、如何用数据驱动运营

1、数据驱动运营的内涵

数据驱动运营是一个很宽泛的概念,但拆分下来,数据驱动运营有三个内涵:

产品运营人员要具备数据意识,通过数据发现问题

产品运营人员可以通过数据管理本职工作,用数据解决问题

让数据说话,提高各部门的沟通效率

2、数据驱动运营的工作流程
IMG_257
1)定义数据分析目标

明确目标,意味着运营人员(或数据分析师)要站在数据结果输出对象的角度去思考。对于管理层来说,往往会关注以下几个结果:

重大决策最终反应在了哪些指标上

这些指标有什么关联

业务全局有什么变化趋势

与过去相比,哪些进步了,哪些退步了

数据暴露出了什么问题,需要做什么调整

产品运营人员则更关注细节。整体来看,运营数据分析的目标主要有三类——即「解决是什么、为什么、做什么」的问题,具体的数据分析目标还要结合实际工作来定义:

是什么:如运营举措的效果如何?产品优化的效果如何?用户使用情况是怎样的?用户的体验反馈如何?

为什么:如转化率为什么提升/降低?用户为什么会产生意料之外的行为?运营举措和产品优化为什么有效/没有效果?

做什么:如运营策略该如何调整?产品该怎么优化?业务战略该怎么调整?

2)数据指标拆解

在确定了分析目标后,就需要进行数据指标拆解。明确要分析哪些具体的数据指标,为了避免遗漏关键细节,可以先对业务(或某一个活动、使用场景)流程做梳理,得出每一个节点的数据指标项,根据分析目标需要,保留关键项,剔除多余项。

3)数据采集

定义数据源:在分析数据之前,要对数据来源、统计口径、统计周期加以定义,以便提交「数据提取」需求。

数据的获取途径:数据来源包括埋点数据、运营平台、业务平台、第三方平台、回访调研等。运营人员要对不同数据源的真实性、准确性做把关。

4)数据可视化

使用图表工具,将数据可视化,更容易发现数据的趋势、极值、联系。不同图表类型适用于不同的分析场景。

散点图:用于描述数据之间的规律

折线图:描述数据随着时间变化的趋势

面积图:折线图的延伸,更注重数据和时间趋势的变化关系

柱形图:类别之间的关系

饼状图:数据之间的占比

漏斗图:转化率分析、占比分析

雷达图:个体数据的属性和可视化,常用于用户画像、CRM

树形图:适合数据量大、类别多的情况,比如各类电商的SKU

桑基图:解释数据复杂变化的趋势,一对多或者多对一

热力图:属性和维度的规律组合,有点像折线图

关系图:不同种类的关系,常用于社交媒体

箱线图:统计学图表,用于研究和观察数据分布,对比数据分布等

标靶图:用于业务销售完成情况等

词云图:文本分析利器

地理图:数据和空间的关系
IMG_258
5)数据分析

解决问题是数据分析的最终落脚点。这一环节的目标是发现数据的特征、规律、数据之间的关联,通过对数据的洞察解决实际问题。

6)输出数据分析结论

数据分析的结果可以根据需要以Word或PPT的形式呈现。

报告应采取总分总的格式:

总述:阐述数据分析的背景、目的、目标、分析思路、目录、关键发现。

分述:对业务按多维度细分分析,用数据图表与相应结论阐述观点。

总结:提出结论与优化建议、行动计划、对业务发展做预测,提出策略与结论、附录。

根据实际工作需要,「报告」不一定是必须的,数据分析的结果是为了下一步的行动计划作支撑。

7)测试验证

根据数据分析结论,按照计划开展优化测试,对测试效果展开分析,以此开启新的数据分析进程,形成数据分析工作的闭环。

三、数据分析的基本指标

1、基础数据指标

基础数据指标参考了增长黑客理论中的AARRR模型,针对用户从新增到流失的多个环节,来定义相应指标。

新增:日/周/月新增。这里有两个维度,增量与增速。新增用户增速是产品增长的基础

传播:病毒系数、传播周期。平均每位老用户会带来几位新用户?大于 1 的时候,产品才可能出现爆发式的指数增长。老用户一般在注册(新增)后多长时间带来新用户?传播周期越短,增长速度越快。

活跃:活跃用户数DAU/MAU。只有活跃用户才能为产品带来价值。

留存:留存率:次日、周、月。使用产品的时间越久(活的长久),对产品的潜在价值越大留存的计算业内有多种方式,但大多数采用了下方的计算公式:

次日留存率=(当天新增的用户中,第2天还登录的用户数)/第一天新增用户总数;

七日留存率=(第一天新增的用户中,在往后的第7天还有登录的用户数)/第一天新增总用户数;

月留存率=(第一天新增的用户中,在往后30天还有登录的用户数)/第一天新增总用户数

流失:流失率。

一段时间内流失的用户,占这段时间活跃用户数的比例。只有当产品新用户增长的速度大于老用户流失的速度时,产品的活跃用户数才会是正增长。

2、用户行为数据指标

另一个维度,立足于用户行为,可以根据提升黏性、提升参与度、提升转化这三个目标定义具体的数据指标。

黏性指标:留存率、周活天留存率反应产品是否满足用户需要。周活天反应用户忠诚度。

参与度指标:活跃度、停留时长、访问页面数量

转化指标:用户从上一环节到下一环节的转化率

这两种指标体系都具有参考价值,可以根据自身实际情况适当组合。

文章来源:网络 版权归原作者所有

上文内容不用于商业目的,如涉及知识产权问题,请权利人联系小编,我们将立即处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/350773.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

恒创科技:香港服务器内存不足有哪些原因?

内存是服务器中非常重要的组件之一,它直接影响服务器的运行速度和稳定性。然而,在使用香港服务器的过程中,有时候会出现内存不足的情况,导致服务器性能下降,甚至出现宕机等问题。那么,香港服务器内存不足的…

Vue中使用TypeScript:全面指南和最佳实践

🚀 欢迎来到我的专栏!专注于Vue3的实战总结和开发实践分享,让你轻松驾驭Vue3的奇妙世界! 🌈✨在这里,我将为你呈现最新的Vue3技术趋势,分享独家实用教程,并为你解析开发中的难题。让我们一起深入Vue3的魅力,助力你成为Vue大师! 👨‍💻💡不再徘徊,快来关注…

高频词800词版本

【金山文档】 【英语342】 高考800高频词 https://kdocs.cn/l/cdwnHjWNbKN9

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)-机器人、强化学习

专属领域论文订阅 关注{晓理紫},每日更新论文,如感兴趣,请转发给有需要的同学,谢谢支持 如果你感觉对你有所帮助,请关注我,每日准时为你推送最新论文。 分类: 具身智能,机器人强化学习开放词汇&…

MSTP协议

目录 MSTP 基本原则 MSTP术语 BPDU变化 三种生成树的比较 MSTP MSTP(802.1s)多生成树。 多生成树(MSTP)解决: (1)去掉环 (2)负载均衡(重点) (3&#xf…

6K star!大神出书,解决(几乎)所有机器学习的问题

今天我们推荐的既是一个开源项目更是一本书,它是由技术界的大神Abhishek Thakur 所作,可以帮你解决(几乎)所有机器学习的问题,开源项目在GitHub 有 6K Star,它就是:approachingalmost。 approachingalmost是什么? ap…

大创项目推荐 目标检测-行人车辆检测流量计数

文章目录 前言1\. 目标检测概况1.1 什么是目标检测?1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 前言 🔥 优质竞赛项目系列,今天要分享的是 行人车辆目标检测计数系统 …

五、Kotlin 函数进阶

1. 高阶函数 1.1 什么是高阶函数 以下 2 点至少满足其一的函数称为高阶函数: 形参列表中包含函数类型的参数 //参数 paramN 可以是:函数引用、函数类型变量、或 Lambda 表达式。 fun funName(param1: Type1, param2: Type2, ... , paramN: (p1: T1, p2…

Java接收curl发出的中文请求无法解析

最近做项目遇到了这种情况,Java接收curl发出的中文请求无法解析,英文请求一切正常,中文请求则对方服务器无法解析,可以猜测是中文导致的编码问题,但是奇怪的是,本地输出json也没有乱码,编解码正…

Unity——八叉树的原理与实现

八叉树原理 八叉树(Octree)是一种用于在三维空间中进行空间分割的数据结构。它将三维空间递归地划分为八个子空间,每个子空间对应于一个八叉树节点。这种分割方式可以有效地组织和管理场景中的对象,提高检索效率,特别…

ubuntu 相关内容

ubuntu 优盘安装: 台式机安装纯ubuntu系统的操作步骤-CSDN博客https://blog.csdn.net/youngwah292/article/details/127032009?ops_request_misc%257B%2522request%255Fid%2522%253A%2522170583039216800213099577%2522%252C%2522scm%2522%253A%252220140713.1301…

【USTC】verilog 习题练习 36-40

36 条件运算符 题目描述 Verilog中有一个跟C语言中类似的三目条件运算符( ? : ),其语法格式为: (condition ? if_true : if_false) 该表达式可以用于为其它信号赋值,例如:signal condition ? if_true : if_fals…

455. 分发饼干 - 力扣(LeetCode)

题目描述 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺…

区块空间----流动性铭文

铭文正在改变加密世界,越来越多的人开始关注铭文,并参与进来!铭文赛道的未来是非常具有潜力和想象力的,甚至能够达到加密货币的普及水平。当然,这需要更多的基础设施更多的用例支持,但是一切都才刚刚开始。…

@JsonIgnore的使用及相关问题的解决

目录 1 前言 2 对比及其使用方法 3 遇到的相关问题及解决方法 1 前言 在我们编写的后端项目中,有时候可能需要将某个实体类以JSON格式传送给前端,但是其中可能有部分内容我们并不想传送,这时候我们选择将这部分内容变成Null,这…

网络安全01--负载均衡

目录 一、环境准备 1.1三台虚拟机 二、开始搭建负载均衡: 2.1准备一下源 2.2正式安装 2.3Nginx安装情况 三、修改配置文件,反向代理达到负载均衡效果 3.1在 http 部分添加如下负载均衡配置: 3.2简单解释一下server端: 四…

Unity2020.3打包ARFoundation问题记录

文章目录 前言一、打包成功后再打包失败(重启工程后)二、URP管线总结 前言 在Unity 2020.3版本中使用ARFoundation进行打包时,遇到一些小问题。本文简要记录了其中一些问题及解决方法,以备不时之需。 一、打包成功后再打包失败&a…

【第一天】蓝桥杯备战

题 1、 门牌号2、卡片3、分数 1、 门牌号 https://www.lanqiao.cn/problems/592/learning/ 解法一:暴力遍历 import java.util.Scanner; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scanner sca…

鸿蒙开发(Harmonyos兼容与Harmonyos适配)

布局的实现 Layout_ability_main.xml布局&#xff1a; <?xml version"1.0" encoding"utf-8"?> <DirectionalLayoutxmlns:ohos"http://schemas.huawei.com/res/ohos"ohos:height"match_parent"ohos:width"match_pare…

AI引爆算力需求,思腾推出支持大规模深度学习训练的高性能AI服务器

近日人工智能研究公司OpenAI公布了其大型语言模型的最新版本——GPT-4&#xff0c;可10秒钟做出一个网站&#xff0c;60秒做出一个游戏&#xff0c;参加了多种基准考试测试&#xff0c;它的得分高于88%的应试者&#xff1b;随后百度CEO李彦宏宣布正式推出大语言模型“文心一言”…