76.Go分布式ID总览

文章目录

  • 简介
  • 一:UUID
  • 二、雪花算法
  • 三:Leaf-snowflake
  • 四:数据库自增ID
  • 五:使用Redis实现分布式ID生成
  • 六:使用数据库分段(Leaf-segment)
  • 七 :增强版Leaf-segment
  • 八:Tinyid
  • 九: 分布式键生成服务(如Zookeeper、etcd)

简介

在分布式系统中,生成唯一的ID是一个核心问题,特别是在需要确保数据完整性和避免冲突的场景中,比如作为链路追踪的trace_id,作为幂等性的主键id, 分布式锁中为了避免释放的是别人的锁时,本地保存的唯一id等。以下是对一些分布式唯一ID生成方法的详细阐述,包括它们的工作原理、优缺点,以及对网络依赖性的考量

一:UUID

实现原理

  • 工作方式:UUID是通过一系列算法生成的128位数字,通常基于时间戳、计算机硬件标识符、随机数等元素。

  • 全局唯一性:算法设计确保了即使在分布式系统中也能生成全局唯一的ID

优缺点

  • 优点:实现简单,无需网络交互,保证了ID的全球唯一性。

  • 缺点:通常不能保证顺序性,ID较长,可能导致存储和索引效率低下。

  • 网络依赖性:无网络依赖。

注意:工作中基本不使用uuid,这里是为了介绍分布式ID的完整性,以及UUID大家都熟知,所以一起介绍一下

uuid有两种包:

  • github.com/google/uuid,仅支持V1V4版本。

  • github.com/gofrs/uuid ,支持全部五个版本。

下面简单说下五种版本的区别:

Version 1,基于mac地址、时间戳。

Version 2,based on timestamp,MAC address and POSIX UID/GID (DCE 1.1)

Version 3,Hash获取入参并对结果进行MD5。

Version 4,纯随机数。

Version 5,based on SHA-1 hashing of a named value。

特点

  • 5个版本可供选择。

  • 定长36字节,偏长。

  • 无序。

package mian

import (
    "github.com/gofrs/uuid"
    "fmt"
)

func main() {
    // Version 1:时间+Mac地址
    id, err := uuid.NewV1()
    if err != nil {
        fmt.Printf("uuid NewUUID err:%+v", err)
    }
    // id: f0629b9a-0cee-11ed-8d44-784f435f60a4 length: 36
    fmt.Println("id:", id.String(), "length:", len(id.String()))

    // Version 4:是纯随机数,error会在内部报panic
    id, err = uuid.NewV4()
    if err != nil {
        fmt.Printf("uuid NewUUID err:%+v", err)
    }
    // id: 3b4d1268-9150-447c-a0b7-bbf8c271f6a7 length: 36
    fmt.Println("id:", id.String(), "length:", len(id.String()))
}

二、雪花算法

Twitter开发的一种生成64ID的服务,基于时间戳、节点ID和序列号。

实现原理

  • 工作方式:结合时间戳、工作机器的ID和序列号来生成64位的ID。时间戳保证了ID的唯一性和顺序性,工作机器ID保证了在多机环境下的唯一性。

  • 时间戳:确保ID按时间顺序增长。

优缺点

  • 优点:ID有时间顺序,长度适中,生成速度快。

  • 缺点:对系统时钟有依赖,时钟回拨会导致ID冲突。(时钟回拨:服务器上的时间突然倒退回之前的时间。可能是人为的调整时间;也可能是服务器之间的时间校对。)

  • 网络依赖性:通常无需网络交互,除非在多机器环境中同步机器ID

由于雪花算法工作中还是可能用到的,所以介绍更详细一些。

Snowflake的核心思想是:使用41bit作为毫秒数,10bit作为机器的ID5bit是数据中心(DC,机房)),5bit的机器ID(也可能是容器id)),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是01。这样可以确保每个ID都是唯一的。
图片

package main

import(
    "fmt"
    "github.com/bwmarrin/snowflake"
)

func main() {
// 参数为机器id
  node, err := snowflake.NewNode(1)
    if err != nil {
      fmt.Println(err)
      return
    }

    id := node.Generate().String()    
    // id: 1552614118060462080 length: 19
    fmt.Println("id:", id, "length:", len(id))
}

三:Leaf-snowflake

时钟回拨

服务器上的时间突然倒退回之前的时间。可能是人为的调整时间;也可能是服务器之间的时间校对。

实现方案
在这里插入图片描述

Zookeeper顺序增、全局唯一的节点版本号,替换了原有的机器地址。解决了时钟回拨的问题。强依赖ZooKeeper、大流量下可能存在网络瓶颈。下图的方案在Leaf-snowflake 中通过缓存一个ZooKeeper文件夹,提高可用性。运行时,时差小于5ms会等待时差两倍时间,如果时差大于5ms报警并停止启动。

在这里插入图片描述

四:数据库自增ID

实现原理

  • 工作方式:基于中央数据库的序列生成器,如自增主键ID,每次请求时递增序列值。

  • 顺序性:保证了生成ID的顺序性和唯一性。

优缺点

  • 优点:简单可靠,保证顺序性。

  • 缺点:

    • 可能成为系统的单点故障,对数据库有较高的依赖。
    • 由于有序递增,易暴露业务量。受到数据库性能限制,对高并发场景不友好。
    • bigint最大是2^64-1,但是数据库单表肯定放不了这么多,那么就涉及到分表。
    • 如果业务量真的太大了,主键的自增id涨到头了,会发生什么?报错:主键冲突。
    • 网络依赖性:高度依赖网络,所有ID生成请求都需要访问中央数据库。

正是由于这众多缺点,所以工作中是不用它的,不过可以作为一种思路。

五:使用Redis实现分布式ID生成

Redis是一个高性能的键值数据库,它可以用于生成分布式唯一标识符。

实现原理

  • 利用Redis的原子操作:Redis提供了原子性的INCRINCRBY命令,可用于生成唯一的递增数值。这些数值可以作为唯一ID

  • 分布式环境中的应用:在分布式环境中,可以部署多个Redis实例。每个实例可以独立生成ID,或者通过配置不同的起始值和步长来确保ID的全局唯一性。

  • 高性能和可靠性:Redis的高性能确保了即使在高负载下也能快速生成ID,同时Redis的持久化和复制特性提高了系统的可靠性。

优缺点分析

  • 优点:快速、简单且易于扩展;支持高并发环境。

  • 缺点:依赖于外部服务(Redis),需要管理和维护额外的基础设施。

  • 网络依赖性:高度依赖网络。

六:使用数据库分段(Leaf-segment)

这种方法涉及到使用数据库来生成和管理ID段,以实现分布式ID的生成。

实现原理

  • ID段的分配:在数据库中预设一个起始ID和步长,每个应用实例或服务节点从数据库中获取一个ID段,然后在本地生成ID,直到该段用完再从数据库获取新的段。

  • 减少数据库交互:每个节点在消耗完一个ID段之前不需要与数据库交互,这减少了数据库的负载,并提高了ID生成的效率。

  • 避免冲突:通过确保每个节点获取的ID段不重叠,可以保证生成的ID在全系统范围内是唯一的。

优缺点分析

  • 优点:减少了对数据库的频繁访问,提高了性能;适合在分布式系统中使用。

  • 缺点:管理复杂性:管理不同的ID段需要额外的逻辑和数据库设计。可能的ID浪费:如果某个服务或实例在用完其ID段之前下线或重启,可能导致分配的ID未被完全使用。

  • 网络依赖性:对网络的依赖相对较低,只在申请新的ID段时需要访问数据库。

实际例子
把数据库自增主键换成了计数法。每个业务分配一个biz_tag、并记录各业务最大id(max_id)、号段跨度(step)等数据。这样每次取号只需要更新biz_tag对应的max_id,就可以拿到stepid。比如业务business_a当前max_id3000,取了1000个号在本地使用,使用完后,可以更新DB中对应的max_id4000,这样business_a本地就有1000个新的id可以用了

在这里插入图片描述

优点

  1. 除了拥有自增ID的优点之外,在性能上比自增ID更好,扩展灵活。
  2. 使用灵活、可配置性强。
  3. 缓存机制,突发状况下短时间内能保证服务正常运转。

缺点

  1. id是有序自增,容易暴露信息,不可用于订单。
  2. leaf的缓存ID用完再去获取新号段的间隙,性能会有波动。
  3. 强依赖DB

七 :增强版Leaf-segment

增强版是对上面描述的缺点2进行的改进——双cache。在leafID消耗到一定百分比时,常驻的后台进程会预先去号段服务获取新的号段并缓存。具体消耗百分比、及号段step根据业务消耗速度来定。

在这里插入图片描述

八:Tinyid

和增强版Leaf-segment类似,也是号段模式,提前加载号段。

在这里插入图片描述

九: 分布式键生成服务(如Zookeeper、etcd)

分布式协调服务在集群中生成唯一ID

ZooKeeper是使用了Znode结构中的Zxid实现顺序增IDZookeeper类似一个文件系统,每个节点都有唯一路径名(Znode),Zxid是个全局事务计数器,每个节点发生变化都会记录响应的版本(Zxid),这个版本号是全局唯一且顺序递增的。这种架构还是出现了ZooKeeper的单点问题。

实现原理

  • 工作方式:这些服务提供了分布式锁和原子性操作来生成唯一的ID

  • 协调机制:通过集群协调机制保证ID的唯一性和顺序性。

优缺点

  • 优点:提供了更加灵活和可控的ID生成方式,适合分布式环境。

  • 缺点:引入外部依赖,增加了系统的复杂性。

  • 网络依赖性:高度依赖网络,因为它们需要在多个节点之间协调ID的生成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/346507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux破解密码

破解root密码(Linux 7) 1、先重启——e 2、Linux 16这一行 末尾加rd.break(不要回车)中断加载内核 3、再ctrlx启动,进入救援模式 4、mount -o remount,rw /sysroot/——(mount挂载 o——opti…

第四十周:文献阅读+GAN

目录 摘要 Abstract 文献阅读:结合小波变换和主成分分析的长短期记忆神经网络深度学习在城市日需水量预测中的应用 现有问题 创新点 方法论 PCA(主要成分分析法) DWT(离散小波变换) DWT-PCA-LSTM模型 研究实…

【sgTree】自定义组件:加载el-tree树节点整棵树数据,实现增删改操作。

特性 可以自定义主键、配置选项支持预定义节点图标:folder文件夹|normal普通样式多个提示文本可以自定义支持动态接口增删改节点可以自定义根节点id可以设置最多允许添加的层级深度支持拖拽排序,排序过程还可以针对拖拽的节点深度进行自定义限制支持隐藏…

运用ETLCloud快速实现数据清洗、转换

一、数据清洗和转换的重要性及传统方式的痛点 1.数据清洗的重要性 数据清洗、转换作为数据ETL流程中的转换步骤,是指在数据收集、处理、存储和使用的整个过程中,对数据进行检查、处理和修复的过程,是数据分析中必不可少的环节,对…

人工智能技术应用:引领未来的智能时代

随着科技的日新月异,人工智能(AI)技术应用正逐渐成为我们生活中不可或缺的一部分。从智能手机中的语音助手到无人驾驶汽车,人工智能技术正在推动世界进入一个智能时代。本文将重点探讨人工智能技术在生活、医疗、交通等领域的应用…

Redis(秒杀活动、持久化之RDB、AOF)

目录 秒杀活动 一、测压工具jmete的使用 二、java实现秒杀活动 1、myseckillcontroller 2、先启动pos请求添加商品,再启动jmeter进行压测 Redis持久化 一 、Redis持久化之RDB 1.RDB是什么 2. 备份是如何执行的 3.Fork 4. RDB持久化流程 5. dump.rdb文件 6…

03-TiDB-单机上模拟部署生产环境集群

1、安装集群cluster组件 tiup cluster # 已安装的可以更新 # tiup update --self && tiup update cluster 2、修改主机sshd 服务的连接数限制 vim /etc/ssh/sshd_config # MaxSessions 20#重启 sshd 服务: service sshd restart 3、设置集群配置文件top…

一个监控小技巧,巧妙破解超低温冰箱难题!

在当今科技飞速发展的时代,超低温冰箱监控系统以其在各行各业中关键的温度控制和环境监测功能而备受关注。 超低温环境对于存储生物样本、药品和其他温度敏感物品至关重要,而监控系统则提供了实时、精准的环境数据,确保这些物品的质量和安全性…

Ubuntu apt update提示:GPG 缺少公钥解决方法

Ubuntu 运行: sudo apt update #or sudo apt-get update提示:GPG 缺少公钥以及404 Not Found,如下面所示,有mirror.bwbot.org 和ppa.launchpadcontent.net两个源出现问题。 好多网友用后面的方法解决 真正解决:gpg --verify sig:…

bash 5.2中文修订4

Compound Commands 复合命令 复合命令是 shell 编程语言的结构。每个构造都以保留字或控制运算符开始,并以相应的保留字或运算符终止。与复合命令关联的任何重定向(请参阅 Redirections )都适用于该复合命令中的所有命令,除非显式…

web蓝桥杯真题--14、关于你的欢迎语

介绍 营销号,有时候需要一些特定的欢迎语,但针对特定的用户,我们希望可以个性化一点。本题需要在项目文件中修改代码存在的问题,实现根据模版生成特定用户的欢迎语。 准备 本题已经内置了初始代码,打开实验环境&…

Unity读书系列《Unity3D游戏开发》——拓展编辑器(一)

文章目录 前言一、扩展Project视图1、右键扩展菜单(Asset)2、监听事件3、拓展布局 二、扩展Hierarchy视图1、拓展菜单(GameObject)2、拓展布局3、重写菜单 三、扩展Inspector视图1、扩展原生组件2、扩展继承组件 四、扩展Scene视图…

redis-持久化-1

Redis 提供了2个不同形式的持久化方式。 RDB(Redis DataBase) AOF(Append Of File) 一、Redis持久化之RDB 1.什么是RDB 在指定的时间间隔内将内存中的数据集快照写入磁盘, 也就是行话讲的Snapshot快照&#xff0c…

Windows10上通过MSYS2编译FFmpeg 6.1.1源码操作步骤

1.从github上clone代码,并切换到n6.1.1版本:clone到D:\DownLoad目录下 git clone https://github.com/FFmpeg/FFmpeg.git git checkout n6.1.1 2.安装MSYS2并编译FFmpeg源码: (1).从https://www.msys2.org/ 下载msys2-x86_64-20240113.exe &#…

JS高频面试题(下)

11. 线程和进程的区别 进程是资源分配的最小单元,线程是代码执行的最小单元。 一个应用程序可能会开启多个进程,进程之间数据不共享,一个进程内部可以开启多个线程,线程之间的数据可以共享的,所以多线程的情况下&…

Qt/QML编程之路:ListView实现横排图片列表的示例(40)

ListView列表,在QML中使用非常多,排列一个行,一个列或者一个表格,都会用到ListView。 ListView显示从内置QML类型(如ListModel和XmlListModel)创建的模型中的数据,或在C++中定义的从QAbstractItemModel或QAbstract ListModel继承的自定义模型类中的数据。 ListView有一…

搭建通讯猫类似的TCP服务端

最近需要一个公网的TCP服务端平台来做4G模组的发包测验,通讯猫(http://www.tongxinmao.com/App/Detail/id/1)貌似使用不了,就干脆在自己的腾讯云上搭建了简单的TCP服务端。 我们搭建可以在服务器上使用Python、Java、C#等语言自行编写服务器程序。 目前是…

element-ui 树形控件 通过点击某个节点,遍历获取上级的所有父节点和本身节点

1、需求&#xff1a;点击树形控件的某个节点&#xff0c;需要拿到它上级的所有父节点进行操作 2、代码&#xff1a; 树形控件代码 <el-tree:data"deptOptions"node-click"getVisitCheckedNodes"ref"target_tree_Speech"node-key"id&qu…

javaSSMmysql电影推荐系统03073-计算机毕业设计项目选题推荐(附源码)

目 录 摘 要 Abstract 第1章 前 言 1.1 研究背景 1.2 研究现状 1.3 系统开发目标 第2章 技术与原理 2.1 开发技术 2 2.2 ssm框架介绍 2 2.3 MySQL数据库 2 2.4 B/S结构 2 第3章 需求分析 3.1 需求分析 3.2 系统可行性分析 3.3 项目设计目标与原则 3.4…

阿里云 ACK 云原生 AI 套件中的分布式弹性训练实践

作者&#xff1a;霍智鑫 众所周知&#xff0c;随着时间的推移&#xff0c;算力成为了 AI 行业演进一个不可或缺的因素。在数据量日益庞大、模型体量不断增加的今天&#xff0c;企业对分布式算力和模型训练效率的需求成为了首要的任务。如何更好的、更高效率的以及更具性价比的…