文章目录
- 1.7* 广义胡克定律
- 1.8* 广义胡克定律几种形式
1.7* 广义胡克定律
当材料处于弹性状态时,材料的应变和应力呈现线性关系。比如一根杆受拉伸力F作用,轴向会有伸长,同时横向会缩小,如下图所示。
那么有
σ
x
=
F
A
,
ε
x
=
Δ
l
(36)
\sigma_{x}=\frac{F}{A},\varepsilon_{x}=\frac{\Delta}{l}\tag{36}
σx=AF,εx=lΔ(36)
材料的应变和应力呈现线性关系,那么
ε
x
=
σ
x
E
(37)
\varepsilon_{x}=\frac{\sigma_{x}}{E}\tag{37}
εx=Eσx(37)
同时,由于泊松比的存在,此时横向的应变为
ε
y
=
−
ν
ε
x
(38)
\varepsilon_{y}= -\nu\varepsilon_{x}\tag{38}
εy=−νεx(38)
上述为一维情况,三维应力情况可以通过分解成多个一维情况的叠加(由于材料处于弹性范围,因此叠加原理适用)。
还是以六面体为例,当各个面仅考虑正应力情况时,可以分解成三个方向的一维情况(正应力不产生剪切应变,剪切应力不产生正应变)。
对于情况(1),有
ε
x
x
=
σ
x
x
E
ε
y
y
=
−
ν
ε
x
x
=
−
ν
σ
x
x
E
ε
z
z
=
−
ν
ε
x
x
=
−
ν
σ
x
x
E
(39)
\varepsilon_{xx} =\frac{\sigma_{xx}}{E } \\ \varepsilon_{yy} = -\nu\varepsilon_{xx}=-\nu\frac{\sigma_{xx}}{E }\\ \varepsilon_{zz} = -\nu\varepsilon_{xx}=-\nu\frac{\sigma_{xx}}{E }\tag{39}
εxx=Eσxxεyy=−νεxx=−νEσxxεzz=−νεxx=−νEσxx(39)
对于情况(2),有
ε
y
y
=
σ
y
y
E
ε
x
x
=
−
ν
ε
y
y
=
−
ν
σ
y
y
E
ε
z
z
=
−
ν
ε
y
y
=
−
ν
σ
y
y
E
(40)
\varepsilon_{yy} =\frac{\sigma_{yy}}{E } \\ \varepsilon_{xx} = -\nu\varepsilon_{yy}= -\nu\frac{\sigma_{yy}}{E } \\ \varepsilon_{zz} = -\nu\varepsilon_{yy}= -\nu\frac{\sigma_{yy}}{E } \tag{40}
εyy=Eσyyεxx=−νεyy=−νEσyyεzz=−νεyy=−νEσyy(40)
对于情况(3),有
ε
z
z
=
σ
z
z
E
ε
x
x
=
−
ν
ε
z
z
=
−
ν
σ
z
z
E
ε
y
y
=
−
ν
ε
z
z
=
−
ν
σ
z
z
E
(41)
\varepsilon_{zz} =\frac{\sigma_{zz}}{E } \\ \varepsilon_{xx} = -\nu\varepsilon_{zz}=-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{yy} = -\nu\varepsilon_{zz}=-\nu\frac{\sigma_{zz}}{E } \tag{41}
εzz=Eσzzεxx=−νεzz=−νEσzzεyy=−νεzz=−νEσzz(41)
将三种情况叠加,那么有
ε
x
x
=
σ
x
x
E
−
ν
σ
y
y
E
−
ν
σ
z
z
E
ε
y
y
=
σ
y
y
E
−
ν
σ
x
x
E
−
ν
σ
z
z
E
ε
z
z
=
σ
z
z
E
−
ν
σ
x
x
E
−
ν
σ
y
y
E
(42)
\begin{aligned} \varepsilon_{xx} =\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{yy}}{E }-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{yy} = \frac{\sigma_{yy}}{E }-\nu\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{zz} =\frac{\sigma_{zz}}{E }-\nu\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{yy}}{E } \\ \end{aligned}\tag{42}
εxx=Eσxx−νEσyy−νEσzzεyy=Eσyy−νEσxx−νEσzzεzz=Eσzz−νEσxx−νEσyy(42)
同理,可将剪切应力分为三种单独剪切应力情况的叠加,并有如下式。
γ
x
y
=
τ
x
y
G
γ
y
z
=
τ
y
z
G
γ
x
z
=
τ
x
z
G
(43)
\begin{aligned} \gamma_{xy} =\frac{\tau_{xy}}{G } \\ \gamma_{yz} = \frac{\tau_{yz}}{G } \\ \gamma_{xz} =\frac{\tau_{xz}}{G } \\ \end{aligned}\tag{43}
γxy=Gτxyγyz=Gτyzγxz=Gτxz(43)
上式就成为广义胡克定律。
1.8* 广义胡克定律几种形式
将式(42)进行一定的变换,和式(43)一并如下
ε
x
x
=
1
+
ν
E
σ
x
x
−
ν
E
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
=
σ
x
x
2
G
−
3
ν
E
σ
m
ε
y
y
=
1
+
ν
E
σ
y
y
−
ν
E
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
=
σ
y
y
2
G
−
3
ν
E
σ
m
ε
z
z
=
1
+
ν
E
σ
z
z
−
ν
E
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
=
σ
z
z
2
G
−
3
ν
E
σ
m
ε
x
y
=
1
2
γ
x
y
=
τ
x
y
2
G
ε
y
z
=
1
2
γ
y
z
=
τ
y
z
2
G
ε
x
z
=
1
2
γ
x
z
=
τ
x
z
2
G
(44)
\begin{aligned} \varepsilon_{xx} =\frac{1+\nu}{E }\sigma_{xx}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{xx}}{2G}- \frac{3\nu}{E }\sigma_{m}\\ \varepsilon_{yy} =\frac{1+\nu}{E }\sigma_{yy}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{yy}}{2G}- \frac{3\nu}{E }\sigma_{m} \\ \varepsilon_{zz} =\frac{1+\nu}{E }\sigma_{zz}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{zz}}{2G}- \frac{3\nu}{E }\sigma_{m}\\ \varepsilon_{xy} =\frac{1}{2}\gamma_{xy}=\frac{\tau_{xy}}{2G } \\ \varepsilon_{yz} =\frac{1}{2}\gamma_{yz}= \frac{\tau_{yz}}{2G } \\ \varepsilon_{xz} =\frac{1}{2}\gamma_{xz}=\frac{\tau_{xz}}{2G } \\ \end{aligned}\tag{44}
εxx=E1+νσxx−Eν(σxx+σyy+σzz)=2Gσxx−E3νσmεyy=E1+νσyy−Eν(σxx+σyy+σzz)=2Gσyy−E3νσmεzz=E1+νσzz−Eν(σxx+σyy+σzz)=2Gσzz−E3νσmεxy=21γxy=2Gτxyεyz=21γyz=2Gτyzεxz=21γxz=2Gτxz(44)
按照张量标记,上式可以写成以下形式
ε
i
j
=
σ
i
j
2
G
−
3
ν
E
σ
m
δ
i
j
(45)
\varepsilon_{ij} = \frac{\sigma_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}\tag{45}
εij=2Gσij−E3νσmδij(45)
那么有下式成立
ε
i
i
=
σ
i
i
2
G
−
3
ν
E
σ
m
δ
i
i
=
3
σ
m
2
G
−
3
ν
E
σ
m
⋅
3
=
1
+
ν
−
3
ν
E
⋅
3
σ
m
(46)
\varepsilon_{ii} = \frac{\sigma_{ii}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ii}=\frac{3\sigma_{m}}{2G }-\frac{3\nu}{E }\sigma_{m}\cdot3=\frac{1+\nu-3\nu}{E}\cdot 3\sigma_{m}\tag{46}
εii=2Gσii−E3νσmδii=2G3σm−E3νσm⋅3=E1+ν−3ν⋅3σm(46)
这里的
ε
i
i
\varepsilon_{ii}
εii只反映在正应力作用下,六面体体积变化量,即体现的是体积应变,不失一般性,假设无剪切应变存在,那么六面体各边相互垂直,三个边长分别为
a
1
、
a
2
、
a
3
a_{1}、a_{2}、a_{3}
a1、a2、a3,那么体积应变为
Θ
=
a
1
(
1
+
ε
1
)
a
2
(
1
+
ε
2
)
a
3
(
1
+
ε
3
)
−
a
1
a
2
a
3
a
1
a
2
a
3
=
a
1
a
2
a
3
+
a
1
a
2
a
3
(
ε
1
+
ε
2
+
ε
3
+
ε
1
ε
2
+
ε
1
ε
3
+
ε
2
ε
3
+
ε
1
ε
2
ε
3
)
−
a
1
a
2
a
3
a
1
a
2
a
3
=
ε
1
+
ε
2
+
ε
3
+
ε
1
ε
2
+
ε
1
ε
3
+
ε
2
ε
3
+
ε
1
ε
2
ε
3
≈
ε
1
+
ε
2
+
ε
3
(47)
\begin{aligned} \Theta&=\frac{a_{1}(1+\varepsilon_1)a_{2}(1+\varepsilon_2)a_{3}(1+\varepsilon_3)-a_{1}a_{2}a_{3}}{a_{1}a_{2}a_{3}}\\ &=\frac{a_{1}a_{2}a_{3}+a_{1}a_{2}a_{3}(\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_1\varepsilon_2+\varepsilon_1\varepsilon_3+\varepsilon_2\varepsilon_3+\varepsilon_1\varepsilon_2\varepsilon_3)-a_{1}a_{2}a_{3}}{a_{1}a_{2}a_{3}}\\ &=\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_1\varepsilon_2+\varepsilon_1\varepsilon_3+\varepsilon_2\varepsilon_3+\varepsilon_1\varepsilon_2\varepsilon_3\\ &\approx\varepsilon_1+\varepsilon_2+\varepsilon_3 \end{aligned}\tag{47}
Θ=a1a2a3a1(1+ε1)a2(1+ε2)a3(1+ε3)−a1a2a3=a1a2a3a1a2a3+a1a2a3(ε1+ε2+ε3+ε1ε2+ε1ε3+ε2ε3+ε1ε2ε3)−a1a2a3=ε1+ε2+ε3+ε1ε2+ε1ε3+ε2ε3+ε1ε2ε3≈ε1+ε2+ε3(47)
那么,有
σ
m
=
E
3
(
1
−
2
ν
)
⋅
Θ
=
K
⋅
Θ
(48)
\sigma_{m} = \frac{E}{3(1-2\nu)}\cdot \Theta=K\cdot \Theta\tag{48}
σm=3(1−2ν)E⋅Θ=K⋅Θ(48)
这里K称为体积弹性模量,当然
Θ
=
3
ε
m
\Theta=3\varepsilon_{m}
Θ=3εm,代入,有
σ
m
=
E
1
−
2
ν
⋅
ε
m
(49)
\sigma_{m} = \frac{E}{1-2\nu}\cdot \varepsilon_{m}\tag{49}
σm=1−2νE⋅εm(49)
应变偏张量具有以下形式
e
i
j
=
ε
i
j
−
ε
m
δ
i
j
=
σ
i
j
2
G
−
3
ν
E
σ
m
δ
i
j
−
ε
m
δ
i
j
=
s
i
j
+
σ
m
δ
i
j
2
G
−
3
ν
E
σ
m
δ
i
j
−
ε
m
δ
i
j
=
s
i
j
2
G
+
σ
m
δ
i
j
2
G
−
3
ν
E
σ
m
δ
i
j
−
ε
m
δ
i
j
=
s
i
j
2
G
+
1
+
ν
E
σ
m
δ
i
j
−
3
ν
E
σ
m
δ
i
j
−
ε
m
δ
i
j
=
s
i
j
2
G
+
1
−
2
ν
E
σ
m
δ
i
j
−
ε
m
δ
i
j
=
s
i
j
2
G
(50)
\begin{aligned} e_{ij} &= \varepsilon_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{\sigma_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}+\sigma_{m}\delta_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{\sigma_{m}\delta_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{1+\nu}{E }\sigma_{m}\delta_{ij}-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{1-2\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G } \end{aligned}\tag{50}
eij=εij−εmδij=2Gσij−E3νσmδij−εmδij=2Gsij+σmδij−E3νσmδij−εmδij=2Gsij+2Gσmδij−E3νσmδij−εmδij=2Gsij+E1+νσmδij−E3νσmδij−εmδij=2Gsij+E1−2νσmδij−εmδij=2Gsij(50)
式(45)为应力表示应变形式的广义胡克定律,变换可得应变表示应力的形式。
σ
i
j
=
2
G
ε
i
j
+
2
G
3
ν
E
σ
m
δ
i
j
=
2
G
ε
i
j
+
E
1
+
ν
ν
E
E
1
−
2
ν
⋅
3
ε
m
δ
i
j
=
2
G
ε
i
j
+
E
ν
(
1
+
ν
)
(
1
−
2
ν
)
⋅
3
ε
m
δ
i
j
=
2
G
ε
i
j
+
λ
Θ
δ
i
j
(51)
\begin{aligned} \sigma_{ij}&=2G\varepsilon_{ij}+2G\frac{3\nu}{E }\sigma_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\frac{E}{1+\nu }\frac{\nu}{E }\frac{E}{1-2\nu}\cdot3\varepsilon_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\frac{E\nu}{(1+\nu )(1-2\nu)}\cdot3\varepsilon_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\lambda \Theta\delta_{ij} \end{aligned}\tag{51}
σij=2Gεij+2GE3νσmδij=2Gεij+1+νEEν1−2νE⋅3εmδij=2Gεij+(1+ν)(1−2ν)Eν⋅3εmδij=2Gεij+λΘδij(51)
其中 λ \lambda λ成为拉梅常数。