C++力扣题目56--合并区间 738--单调递增的数字 968--监控二叉树

56. 合并区间

力扣题目链接(opens new window)

给出一个区间的集合,请合并所有重叠的区间。

示例 1:

  • 输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
  • 输出: [[1,6],[8,10],[15,18]]
  • 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

  • 输入: intervals = [[1,4],[4,5]]
  • 输出: [[1,5]]
  • 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
  • 注意:输入类型已于2019年4月15日更改。 请重置默认代码定义以获取新方法签名。

#思路

本题的本质其实还是判断重叠区间问题。

大家如果认真做题的话,话发现和我们刚刚讲过的452. 用最少数量的箭引爆气球 (opens new window)和 435. 无重叠区间 (opens new window)都是一个套路。

这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。

按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)

这么说有点抽象,看图:(注意图中区间都是按照左边界排序之后了

56.合并区间

知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?

其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

C++代码如下:

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result; // 区间集合为空直接返回
        // 排序的参数使用了lambda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        // 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
        result.push_back(intervals[0]); 

        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
                // 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
                result.back()[1] = max(result.back()[1], intervals[i][1]); 
            } else {
                result.push_back(intervals[i]); // 区间不重叠 
            }
        }
        return result;
    }
};

  • 时间复杂度: O(nlogn)
  • 空间复杂度: O(logn),排序需要的空间开销

738.单调递增的数字

力扣题目链接(opens new window)

给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:

  • 输入: N = 10
  • 输出: 9

示例 2:

  • 输入: N = 1234
  • 输出: 1234

示例 3:

  • 输入: N = 332
  • 输出: 299

说明: N 是在 [0, 10^9] 范围内的一个整数。

#思路

#暴力解法

题意很简单,那么首先想的就是暴力解法了,来我替大家暴力一波,结果自然是超时!

代码如下:

class Solution {
private:
    // 判断一个数字的各位上是否是递增
    bool checkNum(int num) {
        int max = 10;
        while (num) {
            int t = num % 10;
            if (max >= t) max = t;
            else return false;
            num = num / 10;
        }
        return true;
    }
public:
    int monotoneIncreasingDigits(int N) {
        for (int i = N; i > 0; i--) { // 从大到小遍历
            if (checkNum(i)) return i;
        }
        return 0;
    }
};

  • 时间复杂度:O(n × m) m为n的数字长度
  • 空间复杂度:O(1)

#贪心算法

题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。

这一点如果想清楚了,这道题就好办了。

此时是从前向后遍历还是从后向前遍历呢?

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

C++代码如下:

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};

  • 时间复杂度:O(n),n 为数字长度
  • 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便

#总结

本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。

想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。

最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。

 

968.监控二叉树

力扣题目链接(opens new window)

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

示例 1:

  • 输入:[0,0,null,0,0]
  • 输出:1
  • 解释:如图所示,一台摄像头足以监控所有节点。

示例 2:

  • 输入:[0,0,null,0,null,0,null,null,0]
  • 输出:2
  • 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

提示:

  • 给定树的节点数的范围是 [1, 1000]。
  • 每个节点的值都是 0。

#思路

这道题目首先要想,如何放置,才能让摄像头最小的呢?

从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!

这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

局部最优推出全局最优,找不出反例,那么就按照贪心来!

此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  1. 二叉树的遍历
  2. 如何隔两个节点放一个摄像头

#确定遍历顺序

在二叉树中如何从低向上推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

后序遍历代码如下:

int traversal(TreeNode* cur) {

    // 空节点,该节点有覆盖
    if (终止条件) return ;

    int left = traversal(cur->left);    // 左
    int right = traversal(cur->right);  // 右

    逻辑处理                            // 中
    return ;
}

注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态

#如何隔两个节点放一个摄像头

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

大家应该找不出第四个节点的状态了。

一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。

因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?

回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

接下来就是递推关系。

那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。

代码如下:

// 空节点,该节点有覆盖
if (cur == NULL) return 2;

递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

如图:

968.监控二叉树2

代码如下:

// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;

  • 情况2:左右节点至少有一个无覆盖的情况

如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

代码如下:

if (left == 0 || right == 0) {
    result++;
    return 1;
}

  • 情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头

代码如下:

if (left == 1 || right == 1) return 2;

1

从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

968.监控二叉树1

这种情况也是大多数同学容易迷惑的情况。

  1. 情况4:头结点没有覆盖

以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

968.监控二叉树3

所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:

int minCameraCover(TreeNode* root) {
    result = 0;
    if (traversal(root) == 0) { // root 无覆盖
        result++;
    }
    return result;
}


 

以上四种情况我们分析完了,代码也差不多了,整体代码如下:

以下我的代码注释很详细,为了把情况说清楚,特别把每种情况列出来。

C++代码如下:

// 版本一
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {

        // 空节点,该节点有覆盖
        if (cur == NULL) return 2;

        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右

        // 情况1
        // 左右节点都有覆盖
        if (left == 2 && right == 2) return 0;

        // 情况2
        // left == 0 && right == 0 左右节点无覆盖
        // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
        // left == 0 && right == 2 左节点无覆盖,右节点覆盖
        // left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }

        // 情况3
        // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        // left == 1 && right == 1 左右节点都有摄像头
        // 其他情况前段代码均已覆盖
        if (left == 1 || right == 1) return 2;

        // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
        // 这个 return -1 逻辑不会走到这里。
        return -1;
    }

public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        // 情况4
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

在以上代码的基础上,再进行精简,代码如下:

// 版本二
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {
        if (cur == NULL) return 2;
        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右
        if (left == 2 && right == 2) return 0;
        else if (left == 0 || right == 0) {
            result++;
            return 1;
        } else return 2;
    }
public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};


  • 时间复杂度: O(n),需要遍历二叉树上的每个节点
  • 空间复杂度: O(n)

大家可能会惊讶,居然可以这么简短,其实就是在版本一的基础上,使用else把一些情况直接覆盖掉了

在网上关于这道题解可以搜到很多这种神级别的代码,但都没讲不清楚,如果直接看代码的话,指定越看越晕,所以建议大家对着版本一的代码一步一步来,版本二中看不中用!

#总结

本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。

在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。

这道题目是名副其实的hard,大家感受感受。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/345364.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于一个QT程序的简单破解思路(不需要分析信号和槽的方法,通用所有程序的破解思路)

几年前,公司买了台国产贴片机,里面的主程序是QT编写,运行在WINDOW XP系统上。主程序打开的界面,如图: 我来简单介绍下程序界面,各位读者不需要搞明白功能,只要知道大体的流程即可。 分析主界面: 一、左边的列表&#xff1a; 贴片生产文件,里面包括了贴片时元器件的坐标、飞达…

【Flutter 面试题】Flutter 是什么?它与其他移动开发框架有什么不同?

文章目录 写在前面Flutter是什么&#xff1f;定义和起源核心设计思想架构组成总结 Flutter与其他移动开发框架的差异1. 跨平台性能2. Dart语言的全面优势3. 热重载功能的优化体验4. 丰富的组件和库的生态系统5. UI一致性和用户体验总结 写在前面 &#x1f44f;&#x1f3fb; 正…

瓦片地图编辑器——实现卡马克卷轴的编辑,键盘控制游戏移动和鼠标点击游戏编辑通过同一个视口实现。

左边是游戏地图编辑区&#xff0c;右边是地图缓冲区&#xff0c;解决了地图缓冲区拖动bug&#xff0c;成功使得缓冲区可以更新。 AWSD进行移动 鼠标左右键分别是绘制/拖动 按F1健导出为mapv3.txt F2清空数组 打印的是游戏数组 easyx开发devcpp 5.11 easyx20220922版本 #…

Conditional Image-to-Video Generation with Latent Flow Diffusion Models

1 Title 重试 错误原因 Conditional Image-to-Video Generation with Latent Flow Diffusion Models&#xff08;Haomiao Ni eg&#xff09; 重试 错误原因 重试 错误原因 2 Conclusion This paper propose an approach for cI2V using novel latent flow diffusi…

C++ STL之priority_queue的使用及模拟实现

文章目录 1. 介绍2. priority_queue的使用3. priority_queue的模拟实现 1. 介绍 英文解释&#xff1a; 也就是说&#xff1a; 优先队列是一种容器适配器&#xff0c;根据严格的弱排序标准&#xff0c;它的第一个元素总是它所包含的元素中最大的。 此上下文类似于堆&#xff0c…

伊恩·斯图尔特《改变世界的17个方程》麦克斯韦方程方程笔记

它告诉我们什么&#xff1f; 电和磁并不会随便乱跑。旋转的电场区域会产生垂直于旋转方向的磁场。旋转的磁场区域也会产生垂直于旋转方向的电场&#xff0c;但方向相反。 为什么重要&#xff1f; 这是物理力的第一次重大统一&#xff0c;表明电和磁是密切相关的。 它带来了什么…

数据结构—基础知识(十):树和二叉树(b)

数据结构—基础知识&#xff08;十&#xff09;&#xff1a;树和二叉树(b) 二叉树的定义 二叉树( Binary Tree)是n(n≥0)个结点所构成的集合&#xff0c;它或为空树(n0)&#xff1b;或为非空树&#xff0c;对于非空树T: 有且仅有一个称之为根的结点&#xff1b;根结点以外的…

Oracle错误代码对应原因

Oracle oracle查询列长度太长ORA-01460ORA-01489ORA-01704 oracle查询列长度太长 查询的varchar的列字符串长度超过4000(取决与oracle怎么计算这个字符的长度) 例如&#xff1a; col like ‘%?%’&#xff0c;如果这个like后面的字符串长度超过4000就会报错&#xff0c;其中…

vivado使用注意事项

记得给constrs&#xff08;.xdc&#xff09;限制文件设置为目标文件&#xff08;set as Target Consraint File&#xff09;

计算机网络原理

第一章 认识计算机网络 &#x1f449;计网体系结构 一、计算机网络概述 见x-mind 二、体系结构&参考模型 1.1 分层结构 1.1.1❓❓❓为什么要分层&#xff1f; 发送文件前要完成的工作&#xff1a; 发起通信的计算机必须将数通信的通路进行激活要告诉网络如何识别目的…

springboot120企业级工位管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的企业级工位管理系统 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 …

vue 解决:Module not found: Error: Can‘t resolve ‘vue-router‘ 的问题

1、问题描述&#xff1a; 其一、报错为&#xff1a; Module not found: Error: Cant resolve vue-router 中文为&#xff1a; 找不到模块&#xff1a;错误&#xff1a;无法解析“vue-router” 其二、问题描述为&#xff1a; 根据报错的中文信息可知&#xff1a;应该是无法…

项目成本估算基准的常见步骤

项目成本估算基准是指在项目启动阶段确定的用于衡量和控制项目成本的基准。 基准成本是项目成本估算的依据&#xff0c;也是后续成本控制和决策的依据。它为管理层提供项目预算投资方案等关键投资依据&#xff0c;决定资源的分配情况&#xff0c;有助于优化资源使用效率&#x…

B-Tree详解及编码实现

一、概念和特性 1、定义 B-Tree是一种平衡的多叉树&#xff0c;适用于外查找多路搜索树&#xff0c;这种数据结构能够保证数据节点查找、顺序访问、插入、删除的动作&#xff0c;其平均时间复杂读控制在O(logN)内;B树为系统大块数据的读写操作做了优化&#xff0c;少定位记录时…

HCIP 交换

拓扑图&IP划分如下&#xff1a; 第一步&#xff0c;配制VLAN LSW1&#xff0c;LSW2&LSW3同理 检测 LSW1 LSW2 测试

最适合家用的洗地机哪个牌子好?清洁力强的洗地机推荐

随着家用市场的不断壮大&#xff0c;洗地机逐渐为人们熟知。众多厂家为提升深度清洁效果投入大量成本和时间&#xff0c;然而消费者在选择洗地机时往往难以判断品质。无线洗地机市场上涌现多个品牌&#xff0c;如何找到性能优越、实惠耐用的机型呢?在了解洗地机时&#xff0c;…

实战内网穿透NPS搭建过程

前提条件 首先你要有个公网IP的服务器&#xff0c;既然是内网穿透&#xff0c;那必然是通过公网IP或者域名访问本地服务。 官网下载地址 https://github.com/ehang-io/nps/releases 服务端 选择linux_amd64_server.tar.gz 客户端 选择windows_amd64_client.tar.gz 服…

列表的创建与删除

Python 中列表可以动态地添加、修改和删除元素&#xff0c;是 Python 编程中不可或缺的一部分。本文将介绍如何使用 Python 创建和删除列表&#xff0c;以及常用的方法和技巧。 创建列表 在 Python 中&#xff0c;我们可以使用一对方括号 [ ] 来创建一个空列表&#xff0c;也可…

UF_UI_select_with_single_dialog()通过单选对话框选择单个对象。对象可以通过光标或输入名称进行选择。对象被突显出来。

int response0;//返回用户操作类型&#xff0c;点了哪一种返回取消或者确定tag_t objtagNULL_TAG;//输出选择对象tag;double cursor[ 3 ];//输出光标位置tag_t view_tagNULL_TAG;//输出视图tag;UF_UI_select_with_single_dialog("请选择一个对象","获取对象类型…

dolphinscheduler节点二次开发需要改动的部分

dolphinscheduler节点二次开发需要改动的部分 前端 在dolphinscheduler-ui/public/images/task-icons/目录下新增两个节点的logo图片&#xff0c;一个为激活状态的一个为非激活状态的&#xff0c;如下。 修改文件dolphinscheduler-ui/src/views/projects/task/constants/task…