梳理Langchain-Chatchat知识库API接口

一.Langchain-Chatchat 知识库管理

1.Langchain-Chatchat 对话和知识库管理界面

  Langchain-Chatchat v0.28 完整的界面截图,如下所示:

2.知识库中源文件和向量库

  知识库 test 中源文件和向量库的位置,如下所示:

3.知识库表结构

  knowledge_base 数据表内容,如下所示:

二.知识库操作 1

序号操作名字功能解释链接备注
1获取知识库列表就是上面的 samples(faiss @ bge-large-zh)和 test (faiss @ bge-large-zh)。http://127.0.0.1/knowledge_base/list_knowledge_bases-
2选择知识库选中一个知识库没有对应 API 接口-
3新建知识库新建一个知识库http://127.0.0.1/knowledge_base/create_knowledge_base,如下所示:{ "knowledge_base_name": "LLM", "vector_store_type": "faiss", "embed_model": "bge-large-zh"}创建知识库
4上传知识文件向知识库上传文件,比如限制每个文件 200MB,类型可为 HTML, MD, JSON, JSONL, CSV, PDF, PNG, JPG, JPEG, BMP, EML, MSG, EPUB, XLSX, XLSD, IPYNB, ODT, PY, RST, RTF, SRT, TOML, TSV, DOCX, DOC, XML, PPT, PPTX, TXT, HTM只是上传并显示了一个文件,并没有真的将文件上传到知识库中。-
5知识库介绍知识库描述http://127.0.0.1/knowledge_base/update_info,如下所示:{ "knowledge_base_name": "samples", "kb_info": "这是一个知识库"}-
6单段文本最大长度就是将长文本分割成多个较短的段落,每个段落的长度都不超过这个限制。可通过更新现有文件到知识库接口 update_docs 实现。-
7相邻文本重合长度将长文本分割成多个较短的段落时,相邻段落之间重复的文本的长度。这通常是为了确保 LLM 能够理解文本的上下文。可通过更新现有文件到知识库接口 update_docs 实现。-
8开启中文标题加强参考 kb_config.py 解释:1.是否开启中文标题加强,以及标题增强的相关配置;2.通过增加标题判断,判断哪些文本为标题,并在 metadata 中进行标记;3.然后将文本与往上一级的标题进行拼合,实现文本信息的增强。可通过更新现有文件到知识库接口 update_docs 实现。-
9添加文件到知识库将上传的文件添加到知识库中http://127.0.0.1/knowledge_base/upload_docs 说明:接口调用格式 POST -> Body -> form-data。-
1.获取知识库列表

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.get("/knowledge_base/list_knowledge_bases",
        tags=["Knowledge Base Management"],
        response_model=ListResponse,
        summary="获取知识库列表")(list_kbs)

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\knowledge_base\kb_api.py,如下所示:

def list_kbs():
    # Get List of Knowledge Base
    return ListResponse(data=list_kbs_from_db())

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\db\repository\knowledge_base_repository.py,如下所示:

@with_session
def list_kbs_from_db(session, min_file_count: int = -1):
    # 根据文件数量筛选知识库,-1表示不筛选,返回所有知识库
    kbs = session.query(KnowledgeBaseModel.kb_name).filter(KnowledgeBaseModel.file_count > min_file_count).all()
    # 遍历结果,取出知识库名称
    kbs = [kb[0] for kb in kbs]
    return kbs

  http://127.0.0.1/knowledge_base/list_knowledge_bases,返回结果:

{
    "code": 200,
    "msg": "success",
    "data": [
        "samples",
        "test"
    ]
}

2.选中知识库

  选中知识库并没有对应的接口,主要是选中知识库后,更新界面的(1)知识库介绍(2)知识库文档信息,包括源文件(遍历文件夹)和向量库(遍历数据库)。

(1)遍历文件夹

  比如 test 知识库对应的 L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\knowledge_base\test 文件夹。

(2)遍历数据库

  主要是 knowledge_file 数据表,包括 id、file_name、file_ext、kb_name、document_loader_name、text_splitter_name、file_version、file_mtime(文件修改时间)、file_size(单位)、custom_docs(自定义文档)、docs_count、create_time。

3.新建知识库

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/create_knowledge_base",
         tags=["Knowledge Base Management"],
         response_model=BaseResponse,
         summary="创建知识库"
         )(create_kb)

(1)拿到 FaissKBService 实例

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\knowledge_base\kb_api.py

def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
            vector_store_type: str = Body("faiss"),
            embed_model: str = Body(EMBEDDING_MODEL),
            ) -> BaseResponse:
    # Create selected knowledge base
    if not validate_kb_name(knowledge_base_name):  # 验证知识库名称
        return BaseResponse(code=403, msg="Don't attack me")
    if knowledge_base_name is None or knowledge_base_name.strip() == "":  # 知识库名称不能为空
        return BaseResponse(code=404, msg="知识库名称不能为空,请重新填写知识库名称")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)  # 验证知识库是否存在
    if kb is not None:  # 已存在同名知识库
        return BaseResponse(code=404, msg=f"已存在同名知识库 {knowledge_base_name}")  # 404

    kb = KBServiceFactory.get_service(knowledge_base_name, vector_store_type, embed_model)  # 返回FaissKBService实例
    try:
        kb.create_kb()  # 创建知识库
    except Exception as e:
        msg = f"创建知识库出错: {e}"
        logger.error(f'{e.__class__.__name__}: {msg}',
                     exc_info=e if log_verbose else None)
        return BaseResponse(code=500, msg=msg)

    return BaseResponse(code=200, msg=f"已新增知识库 {knowledge_base_name}")

(2)创建知识库

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\knowledge_base\kb_service\base.py,如下所示:

def create_kb(self):
    <em>"""</em>
<em>    创建知识库</em>
<em>    """</em>
<em>    </em>if not os.path.exists(self.doc_path):  # 如果文档路径不存在
        os.makedirs(self.doc_path)  # 创建文档路径
    self.do_create_kb()  # 创建知识库
    status = add_kb_to_db(self.kb_name, self.kb_info, self.vs_type(), self.embed_model)  # 添加知识库到数据库
    return status  # 返回状态

(3)添加知识库到数据库

  L:\20231106_ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\db\repository\knowledge_base_repository.py,如下所示:

@with_session
def add_kb_to_db(session, kb_name, kb_info, vs_type, embed_model):
    # 创建知识库实例
    kb = session.query(KnowledgeBaseModel).filter_by(kb_name=kb_name).first()  # 查询知识库是否存在
    if not kb:  # 如果不存在,创建新的知识库
        kb = KnowledgeBaseModel(kb_name=kb_name, kb_info=kb_info, vs_type=vs_type, embed_model=embed_model)  # 创建知识库实例
        session.add(kb)  # 添加到数据库knowledge_base表中
    else:  # update kb with new vs_type and embed_model
        kb.kb_info = kb_info  # 更新知识库介绍
        kb.vs_type = vs_type  # 更新向量存储类型
        kb.embed_model = embed_model  # 更新嵌入模型
    return True

(4)接口调用

  http://127.0.0.1/knowledge_base/create_knowledge_base,如下所示:

{
    "knowledge_base_name": "LLM",
    "vector_store_type": "faiss",
    "embed_model": "bge-large-zh"
}

  特别说明:没有找到知识库简介字段(确定没有)。参考更新知识库介绍/knowledge_base/update_info。

  数据表 knowledge_base 信息,如下所示:

  LangChain-Chatchat 知识库管理界面信息,如下所示:

4.上传知识文件

  st.file_uploader 创建一个文件上传组件,显示一个选择文件的按钮。如下所示:

files = st.file_uploader("上传知识文件:",
                         [i for ls in LOADER_DICT.values() for i in ls],
                         accept_multiple_files=True,
                         )

  只是显示了一个文件,并没有真的将文件上传到知识库中。

5.知识库介绍

(1)知识库更新实现

  F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/update_info",
         tags=["Knowledge Base Management"],
         response_model=BaseResponse,
         summary="更新知识库介绍"
         )(update_info)

  对应的接口实现,如下所示:

def update_info(
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        kb_info: str = Body(..., description="知识库介绍", examples=["这是一个知识库"]),
):
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
    kb.update_info(kb_info)

    return BaseResponse(code=200, msg=f"知识库介绍修改完成", data={"kb_info": kb_info})

  本质上还是更新数据库 knowledge_base,对知识库介绍字段进行更新。

(2)接口调用

http://127.0.0.1/knowledge_base/update_info,如下所示:

6.单段文本最大长度

  可通过更新现有文件到知识库接口 update_docs 实现。

7.相邻文本重合长度

  可通过更新现有文件到知识库接口 update_docs 实现。

8.开启中文标题加强

  可通过更新现有文件到知识库接口 update_docs 实现。

9.添加文件到知识库,并/或向量化

  F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/upload_docs",
         tags=["Knowledge Base Management"],
         response_model=BaseResponse,
         summary="上传文件到知识库,并/或进行向量化"
         )(upload_docs)

(1)upload_docs 函数

def upload_docs(
        file: List[UploadFile] = File(..., description="上传文件,支持多文件"),
        knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
        override: bool = Form(False, description="覆盖已有文件"),
        to_vector_store: bool = Form(True, description="上传文件后是否进行向量化"),
        chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"),
        chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
        zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
        docs: Json = Form({}, description="自定义的docs,需要转为json字符串",
                          examples=[{"test.txt": [Document(page_content="custom doc")]}]),
        not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
) -> BaseResponse:
序号字段名类型解释备注
1fileList[UploadFile]上传文件,支持多文件-
2knowledge_base_namestr知识库名称-
3overridebool覆盖已有文件-
4to_vector_storebool上传文件后是否进行向量化-
5chunk_sizeint知识库中单段文本最大长度就是将长文本分割成多个较短的段落,每个段落的长度都不超过这个限制。
6chunk_overlapint知识库中相邻文本重合长度将长文本分割成多个较短的段落时,相邻段落之间重复的文本的长度。这通常是为了确保 LLM 能够理解文本的上下文。
7zh_title_enhancebool是否开启中文标题加强参考 kb_config.py 解释:1.是否开启中文标题加强,以及标题增强的相关配置;2.通过增加标题判断,判断哪些文本为标题,并在 metadata 中进行标记;3.然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
8docsJson自定义的 docs,需要转为 json 字符串推测自定义文档主要是为了测试用途(不清楚还有没有其它的用途)。
9not_refresh_vs_cachebool暂不保存向量库(用于 FAISS)目前支持 FAISS,是否保存向量库。

(2)先将上传的文件保存到磁盘

  不再解释,就是将上传的文件保存到知识库本地相应的文件夹中。

(3)对保存的文件进行向量化

  当 to_vector_store=True 时,调用更新知识库文档接口 update_docs。具体实现如下所示:

# 对保存的文件进行向量化
if to_vector_store:  # 如果需要向量化
    result = update_docs(  # 调用update_docs接口
        knowledge_base_name=knowledge_base_name,  # 知识库名称
        file_names=file_names,  # 文件名称
        override_custom_docs=True,  # 覆盖之前自定义的docs
        chunk_size=chunk_size,  # 知识库中单段文本最大长度
        chunk_overlap=chunk_overlap,  # 知识库中相邻文本重合长度
        zh_title_enhance=zh_title_enhance,  # 是否开启中文标题加强
        docs=docs,  # 自定义的docs
        not_refresh_vs_cache=True,  # 暂不保存向量库(只有FAISS实现了)
    )
    failed_files.update(result.data["failed_files"])  # 更新上传失败的文件
    if not not_refresh_vs_cache:  # 如果需要保存向量库
        kb.save_vector_store()  # 保存向量库

  默认 not_refresh_vs_cache=True,即暂不保存向量库。如果 not_refresh_vs_cache=False,那么执行 kb.save_vector_store()。FAISS 保存到磁盘(已实现),milvus 保存到数据库(未实现),PGVector 暂未支持(未实现)。具体实现,如下所示:

def save_vector_store(self):
    self.load_vector_store().save(self.vs_path)

(4)接口调用

  http://127.0.0.1/knowledge_base/upload_docs,如下所示:

  控制台输出,可以看到使用的加载器为 UnstructuredFileLoader,然后将向量库保存到磁盘(FAISS),如下所示:

2024-01-21 19:17:56,650 - utils.py[line:286] - INFO: UnstructuredFileLoader used for F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\knowledge_base\LLM\content\data.txt
文档切分示例:page_content='{"Q": "宪法规定的公民法律义务有"}\n{"Q": "属于专门人民法院的是"}\n{"Q": "无效婚姻的种类包括"}\n{"Q": "刑事案件定义"}' metadata={'source': 'F:\\ConversationSystem\\ChatCopilot\\Langchain\\Langchain-Chatchat-0.2.8\\knowledge_base\\LLM\\content\\data.txt'}
Batches: 100%|██████████| 1/1 [00:00<00:00,  4.44it/s]
2024-01-21 19:18:04,893 - faiss_cache.py[line:24] - INFO: 已将向量库 ('LLM', 'bge-large-zh') 保存到磁盘
INFO:     127.0.0.1:61524 - "POST /knowledge_base/upload_docs HTTP/1.1" 200 OK

(5)可能遇到的问题

  通过界面操作时,Browser files 上传一个文件之后,点击按钮"添加文件到知识库",出现如下所示:

INFO:     127.0.0.1:60656 - "POST /knowledge_base/upload_docs HTTP/1.1" 422 Unprocessable Entity
2024-01-21 19:10:25,208 - _client.py[line:1027] - INFO: HTTP Request: POST http://127.0.0.1:7861/knowledge_base/upload_docs "HTTP/1.1 422 Unprocessable Entity"

说明:暂未找到原因。

三.知识库操作 2

序号操作名字功能解释链接备注
1下载选中文档选中一个文档,然后下载,可以是源文件,也可以是向量库。http://127.0.0.1/knowledge_base/download_doc-
2重新添加至向量库1.如果是源文件,执行"添加至向量库"操作 2.如果是向量库,执行"重新添加至向量库"操作http://127.0.0.1/knowledge_base/upload_docs-
3从向量库删除1.如果选中的是源文件,那么该按钮为灰色。2.如果选中的是向量库,那么该按钮可操作。http://127.0.0.1/knowledge_base/delete_docs-
4从知识库中删除1.如果是源文件,那么该按钮可操作。2.如果是向量库,那么该按钮可操作。http://127.0.0.1/knowledge_base/delete_docs-
5依据源文件重建向量库该操作针对的是整个知识库,根据源文件重建向量库,并不针对某个具体的源文件或者向量库文件。http://127.0.0.1/knowledge_base/recreate_vector_store-
6删除知识库就是把整个知识库删除掉
1.下载选中文档

(1)download_doc 接口

  F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.get("/knowledge_base/download_doc",
        tags=["Knowledge Base Management"],
        summary="下载对应的知识文件")(download_doc)

download_doc 接口主要是根据知识库名字和文件名字拿到文件路径,然后返回 FileResponse 对象。

(2)接口调用

  http://127.0.0.1/knowledge_base/download_doc,如下所示:

(3)界面操作

  无论是下载源文件,还是向量库文件,都是先选中,然后下载。下载的向量库文件,和下载的源文件内容都是一样的,都是源文件的内容,而不是编码后的内容。

2.添加至向量库/重新添加至向量库

(1)界面操作

  当选择源文件时,显示添加至向量库,如下所示:

  当选择向量库文件时,显示重新添加至向量库,如下所示:

(2)接口调用

  无论是"添加至向量库",还是"重新添加至向量库"都是调用的 upload_docs 接口,"添加至向量库"控制台日志如下所示:

2024-01-21 23:59:11,127 - utils.py[line:286] - INFO: UnstructuredFileLoader used for F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\knowledge_base\LLM\content\data.txt
文档切分示例:page_content='{"Q": "宪法规定的公民法律义务有"}\n{"Q": "属于专门人民法院的是"}\n{"Q": "无效婚姻的种类包括"}\n{"Q": "刑事案件定义"}' metadata={'source': 'F:\\ConversationSystem\\ChatCopilot\\Langchain\\Langchain-Chatchat-0.2.8\\knowledge_base\\LLM\\content\\data.txt'}
2024-01-21 23:59:21,557 - faiss_cache.py[line:80] - INFO: loading vector store in 'LLM/vector_store/bge-large-zh' from disk.
2024-01-21 23:59:21,611 - SentenceTransformer.py[line:66] - INFO: Load pretrained SentenceTransformer: F:\HuggingFaceModel\bge-large-zh
2024-01-21 23:59:22,878 - loader.py[line:54] - INFO: Loading faiss with AVX2 support.
2024-01-21 23:59:22,878 - loader.py[line:58] - INFO: Could not load library with AVX2 support due to: ModuleNotFoundError("No module named 'faiss.swigfaiss_avx2'")
2024-01-21 23:59:22,878 - loader.py[line:64] - INFO: Loading faiss.
2024-01-21 23:59:23,050 - loader.py[line:66] - INFO: Successfully loaded faiss.
Batches: 100%|██████████| 1/1 [00:00<00:00,  5.64it/s]
2024-01-21 23:59:23,294 - faiss_cache.py[line:24] - INFO: 已将向量库 ('LLM', 'bge-large-zh') 保存到磁盘
2024-01-21 23:59:23,297 - _client.py[line:1027] - INFO: HTTP Request: POST http://127.0.0.1:7861/knowledge_base/update_docs "HTTP/1.1 200 OK"
INFO:     127.0.0.1:50606 - "POST /knowledge_base/update_docs HTTP/1.1" 200 OK

  "重新添加至向量库"控制台日志如下所示:

2024-01-22 00:14:56,917 - utils.py[line:286] - INFO: UnstructuredFileLoader used for F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\knowledge_base\LLM\content\data.txt
文档切分示例:page_content='{"Q": "宪法规定的公民法律义务有"}\n{"Q": "属于专门人民法院的是"}\n{"Q": "无效婚姻的种类包括"}\n{"Q": "刑事案件定义"}' metadata={'source': 'F:\\ConversationSystem\\ChatCopilot\\Langchain\\Langchain-Chatchat-0.2.8\\knowledge_base\\LLM\\content\\data.txt'}
Batches: 100%|██████████| 1/1 [00:00<00:00,  4.71it/s]
2024-01-22 00:14:57,713 - faiss_cache.py[line:24] - INFO: 已将向量库 ('LLM', 'bge-large-zh') 保存到磁盘
2024-01-22 00:14:57,716 - _client.py[line:1027] - INFO: HTTP Request: POST http://127.0.0.1:7861/knowledge_base/update_docs "HTTP/1.1 200 OK"
INFO:     127.0.0.1:51617 - "POST /knowledge_base/update_docs HTTP/1.1" 200 OK
3.从向量库删除

(1)基本删除思路

  只能删除向量库文件,不能删除源文件。因为当选中源文件时,这个按钮是禁用状态。基本删除思路为:删除向量库中的内容(比如 faiss),删除数据库中的内容(knowledge_file 数据表)。F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/delete_docs",
         tags=["Knowledge Base Management"],
         response_model=BaseResponse,
         summary="删除知识库内指定文件"
         )(delete_docs)

(2)接口调用

http://127.0.0.1/knowledge_base/delete_docs,如下所示:

4.从知识库中删除

(1)基本思路

  无论是向量库文件,还是源文件都是可以删除的。基本删除思路为:删除向量库中的内容(比如 faiss),删除数据库中的内容(knowledge_file 数据表),删除上传文件夹中的文件。

(2)接口调用

  查看源码,从向量库删除和从知识库删除区别,前者"delete_content": false,而后者为"delete_content": true。这个字段主要是控制着是否删除文件夹。http://127.0.0.1/knowledge_base/delete_docs,如下所示:

5.依据源文件重建向量库

  F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/recreate_vector_store",
         tags=["Knowledge Base Management"],
         summary="根据content中文档重建向量库,流式输出处理进度。"
         )(recreate_vector_store)

  本质上就是将原来的向量库清空,然后重建操作。http://127.0.0.1/knowledge_base/recreate_vector_store 接口调用如下所示:

  上述英文内容翻译:从内容重新创建矢量存储。当用户可以直接将文件复制到内容文件夹而不是通过网络上传时,这很有用。默认情况下,get_service_by_name 只返回 info.db 中的知识库并在其中包含文档文件。将 allow_empty_kb 设置为 True 使其应用于不在 info.db 中或没有文档的空知识库。

6.删除知识库

  本质上是删除向量库、数据库信息和文件夹。F:\ConversationSystem\ChatCopilot\Langchain\Langchain-Chatchat-0.2.8\server\api.py,如下所示:

app.post("/knowledge_base/delete_knowledge_base",
         tags=["Knowledge Base Management"],
         response_model=BaseResponse,
         summary="删除知识库"
         )(delete_kb)

http://127.0.0.1/knowledge_base/接口调用如下所示:

  除此之外,还有一些接口没有介绍实现逻辑,可参考文献[1]。如果不查看源代码,可能很难较为深入的理解每个操作步骤的具体实现逻辑。

参考文献

[1] Langchain-Chatchat API Server:http://127.0.0.1/docs

[2] https://github.com/chatchat-space/Langchain-Chatchat/releases/tag/v0.2.8

[3] 梳理Langchain-Chatchat知识库API接口(原文链接):https://z0yrmerhgi8.feishu.cn/wiki/XN7AwrH6DiCpMIkaNnAcPd7znZc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/343014.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

超融合基础架构理解

1 超融合基础架构 1.1 定义 超融合基础架构&#xff08;Hyper-converged infrastructure&#xff0c;缩写为HCI&#xff09;&#xff0c;是一种集成了存储设备及虚拟运算的信息基础架构框架。在这样的架构环境中&#xff0c;同一厂商的服务器与存储等硬件单元&#xff0c;搭配…

比较有创意的网站

有创意的网站通常展示了独特的设计、交互或内容。以下是一些备受赞誉的有创意的网站&#xff0c;你可以参考&#xff1a; Awwwards: Awwwards 是一个评选并展示全球最优秀网站的平台。你可以在这里找到很多有创意的网站设计。 Awwwards CSS Design Awards: 类似于Awwwards&…

若依分页失败,由于对数据二次处理导致total只有十条

在使用若依框架的过程中&#xff0c;如果是查询结果数据直接返回&#xff0c;那么其自带的分页插件可以正常返回数据以及总条数&#xff0c;但若是对数据进行了其他二次处理&#xff0c;再返回就会出现异常&#xff0c;即无论查询了多少条&#xff0c;total都只会显示10&#x…

实现纯Web语音视频聊天和桌面分享(附源码,PC端+移动端)

在网页里实现文字聊天是比较容易的&#xff0c;但若要实现视频聊天&#xff0c;就比较麻烦了。本文将实现一个纯Web版的视频聊天和桌面分享的Demo&#xff0c;可直接在浏览器中运行&#xff0c;不需要安装任何插件。 一. 主要功能及支持平台 1.本Demo的主要功能有 &#xff…

CSAPP fall2015 深入理解计算机系统 Cache lab详解

Cache Lab cache lab 缓存实验 代码下载 从CSAPP上面下载对应的lab代码 http://csapp.cs.cmu.edu/3e/labs.html 环境准备 需要安装 valgrind。可以参考文章Valgrind centos。 安装好以后执行valgrind --version可以看到版本号。 Cache simulator cache simulator not a …

苹果眼镜(Vision Pro)的开发者指南(5)-主要工具

主要工具有:Xcode、Reality Composer Pro、Unity 第一部分:【用Xcode进行开发】 开始使用Xcode为visionOS进行开发。将向你展示如何在你现有的项目中添加一个visionOS目标,或者构建一个全新的应用,在Xcode预览中创建原型,以及从Reality Composer Pro中导入内容。还将分享…

c++:string相关的oj题(415. 字符串相加、125. 验证回文串、541. 反转字符串 II、557. 反转字符串中的单词 III)

文章目录 1. 415. 字符串相加题目详情代码1思路1代码2思路2 2. 125. 验证回文串题目详情代码1&#xff08;按照要求修改后放到新string里&#xff09;思路1代码2(利用双指针/索引)思路2 3. 541. 反转字符串 II题目详情代码1思路1 4. 557. 反转字符串中的单词 III题目详情代码1&…

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(3) 刚体的位形 Configuration of Rigid Body

本文仅供学习使用&#xff0c;总结很多本现有讲述运动学或动力学书籍后的总结&#xff0c;从矢量的角度进行分析&#xff0c;方法比较传统&#xff0c;但更易理解&#xff0c;并且现有的看似抽象方法&#xff0c;两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有…

机器学习笔记:地理加权回归(GWR)

1 传统的线性回归 机器学习笔记&#xff1a;线性回归_线性回归的读书笔记-CSDN博客 最优的β为&#xff1a; 2 地理加权回归&#xff08;GWR&#xff09; 2.1 模型概述 地理加权回归&#xff08;Geographically Weighted Regression&#xff0c;GWR&#xff09;是传统回归分…

【算法小记】——机器学习中的概率论和线性代数,附线性回归matlab例程

内容包含笔者个人理解&#xff0c;如果错误欢迎评论私信告诉我 线性回归matlab部分参考了up主DR_CAN博士的课程 机器学习与概率论 在回归拟合数据时&#xff0c;根据拟合对象&#xff0c;可以把分类问题视为一种简答的逻辑回归。在逻辑回归中算法不去拟合一段数据而是判断输入…

5G-A:“繁花”盛开在2024

2019年&#xff0c;我国正式发牌5G&#xff0c;开启5G商用新时代。通信技术十年一代&#xff0c;五年过去了&#xff0c;5G是否要进入“半代更迭”阶段&#xff1f; 2024年被视为5G-A商用元年&#xff0c;是5G走向6G的关键一跃。5G-A以R18为演进起点&#xff0c;在连接速率、网…

【Linux配置yum源以及基本yum指令】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、yum是什么&#xff1f; 二、什么是软件包&#xff1f; 三、三种安装软件包的方式 四、yum的相关操作 4.1、搜索软件 4.2、安装软件 4.3、卸载软件 4.4、那…

龟兔再跑

欢迎来到程序小院 龟兔再跑 玩法&#xff1a;乌龟跳绳&#xff0c;点击鼠标左键乌龟跳跃&#xff0c;两只乌龟一直不停的甩绳子&#xff0c;另外一只乌龟从中跳过&#xff0c;赶快去跳绳吧^^。开始游戏https://www.ormcc.com/play/gameStart/255 html <div class"mai…

vue中keep-alive的理解和使用

简要说明&#xff1a; keep-alive&#xff1a;保留状态。在项目中我们经常将keep-alive和router-view结合使用&#xff0c;实现切换路由后仍然保留之前的路由页面的状态&#xff0c;路由切换回来后不会 重新初始化&#xff0c;而是保留之前的状态。但keep-alive是vue本身提供的…

七八分钟快速用k8s部署springboot前后端分离项目

前置依赖 k8s集群&#xff0c;如果没有安装&#xff0c;请先安装 kubectl &#xff0c;客户端部署需要依赖 应用镜像构建 应用镜像构建不用自己去执行&#xff0c;相关镜像已经推送到docker hub 仓库&#xff0c;如果要了解过程和细节&#xff0c;可以看一下&#xff0c;否…

openEuler操作系统的安装及免密远程连接(超详细版)

一、下载地址 注意&#xff1a;可以先注册华为账号&#xff0c;注册后可享1倍加速 mirrors.huaweicloud.com/openeuler/openEuler-22.03-LTS-SP3/ISO/x86_64/ 二、创建虚拟机步骤 ①选择自定义 ② 根据自己的VMware选择版本 ③选择稍后安装操作系统 ④没有openEuler可以选择…

「 网络安全术语解读 」通用攻击模式检举和分类CAPEC详解

引言&#xff1a;在网络安全领域&#xff0c;了解攻击者的行为和策略对于有效防御攻击至关重要。然而&#xff0c;攻击模式的描述和分类方式缺乏统一性和标准化。为了解决这个问题&#xff0c;MITRE公司创建了CAPEC标准&#xff0c;以提供一个共享和统一的攻击模式分类框架。 1…

给主机双网卡配置双网关,修改Windows路由表

问题背景&#xff1a; 1 一般情况下&#xff0c;Windows主机就算有多个网卡&#xff0c;在默认情况下&#xff0c;只能有一个网卡可以配置网关。 2 在双网卡只配置一个网关的情况下&#xff0c;如果每个网卡值负责访问自己网段内的IP地址&#xff0c;这样是不会出现什么异常现…

C语言爬虫采集图书网站百万数据

最近需要查阅一些资料&#xff0c;只给到相关项目名称以及关键词&#xff0c;想通过图书文库找到对应书籍&#xff0c;那么怎么才能在百万数据库中找到自己需要的文献呢&#xff1f; 今天我依然用C语言写个爬虫程序&#xff0c;从百万数据库中查找到适合的文章&#xff0c;能节…