LiveVideoStack人物专访:深耕多媒体二十载,他怎么看未来的视频云?

抓住已知的,迎面未知的。

编者按: 大模型、降本、出海,是多媒体从业者交流的高频词,内容与交互的需求层出不穷,大模型与AI的演进目不暇接,让增速低走的视频云迎面新的机遇和挑战。作为一个跨越中美多媒体行业20年的亲历者(阿里云视频云负责人何亚明),与他的对话展现出一番场景,他没有否认多媒体生态当下的问题,但他说新的机会就在眼前,更重要的是,他对多媒体满怀希望。

策划 撰写 / LiveVideoStack、IMMENSE

在这里插入图片描述

从微软、Facebook到阿里云,何亚明跨越了中美两大最活跃的经济体,走过PC互联网、移动互联网到视频化的20多年,一直与多媒体为伴。

他认为,无论技术和产品如何演进,音视频作为最贴近用户的展示方式大概率不会改变,这是他对多媒体生态依然充满信心的原因之一。不过,随着大模型向AGI不断演进直至实现,多媒体从业者需要将AGI融入到多媒体技术中,甚至改变原本的工作流。比如在微软,Azure media service“退役”了,但团队并没有流失,而是进入到Copilot ,让Copilot与多媒体更好地结合。

在阿里云视频云,何亚明和团队正在探索通过大模型提高视频处理和生产的效率,希望构建一个属于视频的大模型,通过这个系统可以极大地提升业务决策效率,让系统也变得更加的简单。

在他看来,智能时代也是人机交互的新时代,将带来交互方式的变化,这也带来了对视频技术的新需求。 新需求主要体现在算力和时延两个方面。算力方面,视频技术会更多和AI相结合,会消耗更多的算力。算力也会从服务端逐步向移动端扩展,视频处理和生产会变得更高效、更智能。时延方面,随着Vision Pro、Quest 3和Meta Smart Glasses上市,对延时的要求会变得更高,为了用户体验可能会诞生新的传输格式、压缩算法来进一步降低时延。即便死守着多媒体技术老本行,依然有许多工作要做。这是信心的第二个来源。

第三,何亚明认为AIGC会开始逐步商业化落地。 比如目前传统的服务行业(需要和人沟通的场景,需要24小时在线的)对数字人就有很大的需求。 数字人被许多业内同行认为是当下为数不多的增量市场,也是多媒体技术与大模型结合非常成功的场景。包括电商直播、医疗咨询、保险客服等都有非常明确的客户需求和业务落地。

谈到出海,他觉得国内公司积攒了很多能力,而海外的技术服务相对更标准化,更纯粹地比拼技术能力,中国厂商能够吃到非常多的红利。 尤其在社交、电商场景的应用创新,在海外给用户的体验依然是颠覆性的。

最后,何亚明希望 (多媒体企业出海)能像电动车那样,到海外有真正的定价权,因为我们拥有处于领导地位的质量和技术。他坦言,我们的行业需要更多的协同和规范,从纯粹的竞争到取得行业共识,需要大家共同去努力。

总之,无论国内海外,面对多媒体的未来,一切都很难预测,但就像何亚明说的,有时候科技的发展就像一辆高速驶来的列车,你远远地看着,疑惑怎么还不到?但当它真的从你旁边经过时,可能一不小心就过去了。

在这里插入图片描述
以下是何亚明的对话实录:

二十年,一场多媒体的缘分与螺旋

Q1

LiveVideoStack:我记得应该是2018年,亚明老师回国。我印象特别深刻。我接到了一封邮件,然后我一看,这个人好厉害:之前在Facebook、微软,目前在阿里巴巴,我当时在想,我们有这么大吸引力吗?当时特别欣喜,后来顺理成章地邀请亚明过来做2018 年LiveVideoStackCon北京的分享,后续也有陆陆续续的交流,现在想起来还有点梦幻。

我想从两个视角提问。

首先是全球的视角,你的(工作)经历基本上在流媒体这个圈子里,差不多20多年了,是行业的前辈。第二,从国内的视角看,你回国这几年正好赶上流媒体爆发式的增长,从千播大战、教育、社交、游戏等,包括疫情所带来的远程办公需求的暴增,但现在(生态)又进入到一个调整阶段,国内互联网的流量在下降,用户在逐步回归到混合或传统的线下交流,同时大环境又受到整个经济周期的影响。如果将这两个视角结合在一起,你怎么来回顾总结自己20多年与流媒体相爱相伴,简单地说说你的感受。

何亚明 : 这让我回到了2018年的时候跟你第一次接触的场景,我觉得在中国有一个LVS这样一直在音视频圈子里做交流的组织者还是非常感谢的,也非常感谢你的坚持,我们只是在不同的战线都在坚持着。

言归正传,我最早踏入音视频圈子是2000年,那个时候刚刚去微软,这是视频(应用)的第一波爆发,那时解决的问题就是把视频在线化,无论是Windows media player还是Real的RM,微软的WAV,H.263、H.264才刚刚出来,所有人都想的是“我们把视频在线化”,于是各种player、各种各样的媒体文件的format涌现出来,但还没有进化到流媒体,还停留在container这种format。

第二波则是直播行业出现。 一开始是体育、赛事这样的一些直播,那个时候微软也积极地投入到各种流媒体协议的设计,从最早的media stream,smooth streaming (Dash的前身),然后Dash、HLS的各种协议,迎来了(视频应用)第二波爆发。

第三波是RTC时代。 不管是Facebook的Messenger、Zoom、微信还是钉钉,特别是疫情以后,第三波RTC爆发把延迟从5到10秒降低到百毫秒级别,这也是我们过去经历的关键阶段。

我觉得音视频技术一直是呈螺旋式上升的,过程是起起伏伏的,任何基础技术都是一样的,它不可能永远都在喷发。当你解决了技术的基本问题之后,投资和炒作就会降温,但技术一直在发展。从我刚入行到现在,每天都在解决不同的技术问题,不会存在一个阶段无事可做。不管怎样起伏,我对音视频还是一直抱有热爱和期望的。

紧跟着,下一波又到来。下一波应该是AI和AIGC相结合的,它有可能引爆我们视频行业里非常多的需求增长。比如视频编码,以前不管H.264、H.265、H.266或AV1、AVS,它都是基于人为的块划分,而基于大模型的编码方式是不是能更加符合人眼特征来做?这实际上是一个机会。每次当一个新技术出现的时候,音视频的底层技术也会出现一个大爆发,需求也会相应地增长。

总结来看(音视频)是一个螺旋式的发展,即使陷入增速低谷,很多事情我们还要做,整体上技术都是在往前推进。

在这里插入图片描述

从微软到Meta,视频技术是创新必备的基础力

Q2

LiveVideoStack:你横跨中美,经历了20多年的行业发展,如果对比国外与国内多媒体生态,你有什么不同的感受?

何亚明:前段时间跟前同事聊天,聊到AI时代对流媒体的冲击,可能有些表面看起来是负面的,但实际上背后可能并非如此。

可能你听说了微软把Azure media service“退役”了,Azure media service提供包括转码等各种基础多媒体能力,微软认为这是非常成熟的技术,很多供应商都可以来做。但微软并没有裁掉任何一个人,团队全体进入到Windows Copilot,让 Copilot与多媒体更好地结合。虽然(团队)仍然做多媒体的老本行,但是要面临Copilot AI这个新命题,这个是微软的例子。

我也和很多Meta的同事聊,他们也经历了非常多的变化,从All in元宇宙遇到各种挫折,但所有从事流媒体的人都还在,他们把媒体当作一项基本的能力,(鼓励)大家去做创新的小项目,比如带两个摄像头的手表,听起来挺无厘头的,但在不断地尝试(流媒体)跟硬件、AI结合,把视频技术用到各个小的创新点上,这个趋势跟国内的确不太一样。

在这里插入图片描述

Q3

LiveVideoStack:最近有本关于FFmpeg的新书,也许未来讲流媒体底层的书可能会越来越少,可能会出现“如何用Copilot做流媒体开发”,甚至通过自然语言,就可以做转码服务,推流,流媒体技术会更大众化。

何亚明:是的。底层转封装、转格式这些能力,不会成为多媒体从业者的竞争力。因为你会FFmpeg,所以你有竞争优势,(未来)一定不是这样的。但是我们一直在做To B,每天服务很多客户,需要深度了解多媒体各种应用场景,了解业务的本质,对从业者的要求变得更高了。接下来你还要了解各种大模型,如何在大模型基础上做fine tuning,做各种各样下游的任务,这些都是我们所要具备的这个能力。

AI的决策提效,大模型的交互变革

Q4

LiveVideoStack:谈到人工智能大模型, 流媒体经过了一个快速发展期,现在进入到相对饱和的阶段。如果从信息论的角度看,视频编码我们已经接近信道理论的极限了,可能还有1%-2%需要突破,但遗留下来的问题,相对于我们的付出,回报已经很有限了。相较之下,大模型所带来的增益非常明显,甚至在某些场景下的编码效率已经超过了传统的编码框架,从业者们应该以什么样的心态来看待这个行业?

这里面有两个视角,一个是相对狭隘的视角,还在做流媒体技术栈的这些人该怎么办?还有更广义的视角,流媒体可以包容任何技术栈,无论是人工智能还是GPT,都可以为我所用,我们虽然做的是流媒体,但不会拘泥于自身的技术栈。从这个角度来看,是不是流媒体未来还有非常大的空间,你怎么看?

何亚明:首先我觉得GPT是一个范式的变化。我们现在经历的互联网时代,在很大程度上解决了信息不对称的问题,减少了信息差。尽管我们以前也用AI,但现在大模型下AI、AGI能力的涌现让我觉得它不是一个简单的增加效率或降低成本的问题,而更多带来的是决策效率上的提升。 所以大模型会给所有行业带来变化,焦虑是正常的,但是我们也会看到后面更多的机会。

在这里插入图片描述
回到流媒体,不论这波AI(发展成)什么样,音视频一直是离用户最近的,不论AI技术怎样呈现(文生图、文生视频),它展现的载体依然是视频类这种流媒体形式的。虽然现在可能只是简单地用AI把视频画质提升了,但我相信未来一定会带来一些新的变化。

回顾互联网的历史,每次交互方式的变化都会带来一场革命,而大模型带来范式的变化必然会引发交互形式的变化。 从最早Windows、Mac这些GUI的图形界面带来了交互方式的飞跃,促成了互联网的发展;用手指操作的手机进入到移动互联网,又带来新的交互方式。

在当下这个时代我们马上面临的是用自然语言来交互的界面,通过视觉跟空间感知的新的交互形式,实际上现在已经可以看到一些雏形了。与ChatGPT交流已经很惊艳了,但交互方式依然是文字,不过ChatGPT新版支持语音交互,我经常问ChatGPT一些书籍的问题,甚至已经不需要那些传统的听书软件了。

除了这种交互方式,下一个变化,就是我们对这个世界的感知,而面对空间交互的感知又要依赖数字内容的涌现。总结来看,AI、AGI会让数字资产、数字内容海量地增长,很多时候(这些内容)都是用视频来承载的,这对于视频从业者其实是个机会。

另外,交互方式的变化也带来了对视频技术的新需求。 不管是苹果的Vision Pro,或者是 Meta Quest,又或是Smart Glasses,从大方向上来看,视频仍然是跟AI非常紧密的,它仍然可以站在AI技术的风口浪尖上面。

回到狭义的多媒体技术,我觉得视频从业者需要有更多的改变,因为我们经过这么多年的努力(开源、标准化),现在视频的使用门槛已经变得非常低了,所以要主动去拥抱这波AIGC。

这也是为什么阿里云视频云传统做工程的同学也积极投入到视频算法的研究里面。但是好在开源的东西特别多,多模态大模型也很多,根据我们专有的知识库来使用它,这是我们希望要解决的问题,也是每个多媒体从业者的机会。因为不管各种 AI 技术如何涌现、爆发,最后它还是要回到“你用什么方式展现给你的客户、你的用户”上面来,就要回到流媒体技术上来。

反过来说,流媒体技术也会有新的发展,包括苹果的Vision Pro,由此可能诞生新的format、新的传输的格式,再把交互的延迟降低,算力与AI、多媒体能力结合,虽然这些流媒体基础技术方面听起来并不是非常sexy,但都是基础工作。

另外,AI让内容爆发,结合交互方式的变化,视频不仅简单地应用到泛娱乐的互联网上,而是应用到各行各业中。对于多媒体从业者来说,是非常大的机会。

在这里插入图片描述

多媒体与AI互渗式发展,视频云尝到了甜头

Q5

LiveVideoStack:大模型结合流媒体的小模型,或者细分场景,你和你的团队最近在做哪些探索?有没有一些工程的落地?帮助客户在效率上有比较大的提升?

何亚明:对,实际上刚才讲的AI跟流媒体的结合很早就有了,以前我们有各种各样的算法,包括窄带高清视频增强的算法,超高清、插帧、超分和抠图等等。过去几年AI跟视频的结合一直在演进,但是这波AIGC的确是让我们看到了一些新机会。比如突破了一些技术瓶颈,比如利用大模型抠图的效果(比传统方式)会好很多,通过SAM、CLIP做视频的理解比以前传统的打标签精度和准确度会提高很多。

在阿里云视频云,我们认为AI与多媒体的结合分为三步。第一步,让AI更好地融入到多媒体引擎里。 AI很多时候需要跑在GPU上,而一般的多媒体处理还跑在CPU上,内部的封装格式都不一样,你可能需要YUV,我可能需要压缩格式,AI和多媒体处理都是基于各自的算子,各自独立。于是第一步我们做的就是在架构底层上,让AI(能力)是媒体能力可以在最小的帧级别进行融合,AI能力变成像FFmpeg的一个filter,在架构上让AI与多媒体有更好的结合。

第二步,我们正在做的用大模型平替传统方法的工作。 比如刚刚提到的抠图,以及视频理解,都可以从平替中尝到“甜头"。

第三,我们一直在考虑,通过大模型参与到业务决策和客户沟通中来。 我们现在非常多的业务决策还是靠模板、人工配置,需要不断地跟客户沟通需求,这是我们在实施To B服务过程中的效率瓶颈。大模型可能提供决策能力,我们希望构建一个属于视频的大模型,贴近我们的业务本质。 我们有大量的客户需求、案例与视频内容,基于这些资源,在通用大模型的基础上,在多模态大模型基础上fine tuning,定义好奖励机制,最终构形出一个决策系统。我们希望这个大模型可以极大地提升决策效率,也让系统也变得更加的简单。这还要一步一步来实现。

Q6

LiveVideoStack:有没有一些业务单点上可以看到比较明显的收益了?

何亚明:在2023年的云栖大会上我们展示了一些案例,其中一个,是在云导播台上利用大模型抠图,能够在多人复杂场景下实时抠图,现在已经落地到产品里了。广电传媒与电视台的很多的同事看了以后觉得非常好。以前大家都觉得广电传媒有自己专业的工具效果更好,同时担心数据安全问题不愿意上云,云导播台的实时抠图确实打开了一个突破口。

第二,是大家都在聊的数字人, (通过大模型)让数字人的体态更加自然,可以很快地训练出相似度非常高的、非常自然的语音,再结合云剪辑技术,批量生成数字人内容,云栖大会现场,大家对这种技术也是非常关注的,央视CCTV-2也对我们的这项“数字人X云剪辑”的技术应用做了现场报道。

第三,视频自动标签。 做媒体、做新闻是非常依赖视频标签的,来搜索和过滤内容。以前都是通过小模型打标签、人工打标,周期长、成本高。现在通过多模态自动打标签,泛化性非常好,目前正在落地中。在不同的场景具体的需求不同,比如在传媒领域对内容的精度要求非常高。我们在和各行业的同事交流过程中发现,他们对于这项技术都非常感兴趣,大模型帮我们打开了除互联网泛娱乐之外的空间,可以真正地解决耗时耗力的工作效率问题。

在这里插入图片描述

Q7

LiveVideoStack:数字人应用比较主流的场景是什么?电商直播带货、游戏、社交陪聊?

何亚明:首先,直播带货是一个很大的场景,比如24小时无人讲解带货。第二,在医疗和保险,比如小病的咨询、保险客服等。这里并不是简单地订两个数字人,而是针对每个员工做数字分身,而且又不能让平台客户觉得这是一个数字人(要给客户更强的信任感),这就对数字人的要求很高,让其具备了一些问题解答能力,更要在声音和形态上都非常逼真,目前我们的数字人声复刻能力已经达到和真人难辨的水平,而且训练门槛和成本也很低。我发现,传统的服务行业(需要和人沟通的场景,需要24小时在线的)对数字人的需求非常大。

AI时代,翻新视频云的每一环技术

Q8

LiveVideoStack:刚刚也提到,大模型带来的是交互方式的变革,也会降低流媒体从技术到应用的门槛。你们正在为未来做哪些准备?

何亚明:围绕着AGI带来的这一波,整个的交互方式变得更真实,一切都是围绕着交互的内容来做,来应对相应的挑战。

第一,交互形式的变化会带来算力的挑战。 在服务端,现在GPU卡很难买,阿里云也在着手解决这些问题,尤其是与CPU的厂商联合起来优化算法,(在推理的时候)尽可能摆脱GPU。虽然可能损失一些精度,但很多时候是可用的。同时为了节省GPU,让CPU协助GPU,结合场景做优化,(一定程度上)弥补算力的不足。

另外在终端上有很多大模型落地,包括硬件厂商,比如高通骁龙8 Gen3上已经可以跑大语言模型,未来移动终端硬件的性能会进一步提升。基于大模型大量的算力要做端上的架构优化,实际上也有很多端上推理的架构,优化端智能是我们现在看好的方向,让算力在云和端之间做好平衡。

第二,交互还带来了延迟的挑战。 在高保真虚拟现实的场景下,(控制)延迟是非常重要的,不管是算力的延迟还是传输的延迟,都需要一张很好的传输网络,这也是我们一直在做的,以MediaUni(GRTN)一张网同时支持标准与低延迟直播、实时音视频通话、云渲染,数据传输、远程控制等多元化业务,同时实现算网融合,达到高可靠和低成本的动态平衡。

在这里插入图片描述
整体来看,作为重要的融合,我们一直在打造这张传输与算力网,同时,在边缘侧部署了GPU算力,在上面提供智能的媒体服务,把更多的多媒体引擎和AI引擎相结合。 目前,我们的MediaService在帧级别融合媒体和AI能力,完成从传统媒体处理到AIGC的顶层设计和进化,用AI重塑业务能力,最终实现媒体服务的智能化、多样化、高效化。

在视频编码方面我们推动MediaCodec智能编码,将传统编码与AI深度结合,从商业视角,在努力达到视频质量、成本、算力需求的最佳平衡。同时,深入行业场景,提供简单、低门槛的接入能力,通过MediaBox一体化终端套件,满足视频能力在行业化、场景化、智能化下能够快速上线。

总结来看,在AI时代需要把以前做过的事情都再升级、再进化,视频云的整个架构要迎接AI时代。 我感觉AI时代发展很快,每天好像都有新兴事物出来,日新月异。

在这里插入图片描述

悲观者是对的,但乐观者会成功

Q9

LiveVideoStack:国内已经进入到存量市场,内卷严重。在去年结束的LiveVideoStack深圳大会上,约1/3的话题都和降本有关。很多企业也在出海寻找机会,你认为行业什么时候能够回暖?

何亚明:的确,国内和国外的环境有很大区别。国内谈降本谈得很多,国内基本上所有行业都面临经济寒冬或资本寒冬,大家都想要先活下来。实际上可能有点过于悲观了,当然我认为悲观者永远是对的,但是只有乐观者才有可能成功。

阿里云视频云去年也做了大量的降本工作,包括降低直播带宽成本、服务器成本,刚刚也讲了端智能,CPU与GPU混合计算等。另外在业务侧,我们也通过技术让直播的架构从传统的三层到灵活的一层或两层,包括对冷流优化等进一步降本。

国内竞争环境还是比较激烈的,更多追求的还是眼前,国外的环境更能看到未来的很多东西,所以诚恳地讲,在中国做视频行业是比较难的。但还是希望商业环境能够越来越好,可能美国也经历过很粗暴的原始积累,但如今它的多媒体行业是有比较清晰的界限的,做CDN的、做流媒体的,大家都有自己focus的方向,行业规则也比较成熟、标准化。我相信中国各个互联网厂商未来一定会意识到,建立行业的一些标准来共同发展。

回到你的问题,关于多媒体行业的回暖爆发时间,我很难预测,但我感觉会很快。有时候科技的发展就像一辆高速驶来的列车,你远远地看着,疑惑怎么还不到?但当它真的从你旁边经过时,可能一不小心就过去了。 现在不像以往可以很safe地说3到5年的发展,已经很难知道下一代技术爆发什么时候到来,也许就是2024。

前阵子Meta的朋友给我演示了Smart Glasses,通过摄像头采集画面,可以语音提问这是什么东西?AI Glass背后是Meta的大语言模型,能够回答你的各种问题,这个demo挺震撼的。当然他们也碰到包括延迟和响应速度的问题,(对于技术人和团队而言)这些都是机会。如果(像Smart Glasses这样的)消费级别的产品爆发,它会推着流媒体技术往新的方向走,我们可以在这些新的方向再来“卷”。

在这里插入图片描述

Q10

LiveVideoStack:最后一个问题,国内非常卷。大量的企业包括个人都想去海外,或者已经在做出海的事情了。你怎么看出海?阿里云视频云出海面临怎么样的局面?

何亚明:出海这个战略应该是中国所有互联网公司都在做的一个事儿。阿里的财报也提到,海外业务增长是最快的。我们在国内积攒了很多能力,可以去东南亚、中东和欧洲这些区域,能够把我们的能力快速地应用到他们的产品上。而且海外的技术服务相对更标准化,更纯粹地比拼技术能力,中国厂商会吃到非常多的红利,包括我们在社交、电商场景的应用创新,在中国非常司空见惯了,但在海外给用户的体验还是颠覆性的。

在音视频的技术领域,中国和美国是走在前列的,出海也能够把我们的技术输出,帮助当地把他想要的应用快速孵化出来。我觉得这是一个双赢的局面。我希望(多媒体企业出海)能像电动车那样,到海外有真正的定价权,因为我们拥有处于领导地位的质量和技术。这是一个长期的赛道,我们的行业需要更多的协同和规范,从纯粹的竞争到取得行业的共识,甚至形成真正的联盟,这需要大家共同去努力的。

同时可以看到,国内与海外的音视频服务生态存在很大区别。海外的AWS、Azure media service,都是标准化和模块化的,很少提供端到端一体化服务,非常强调文档的标准化、接口的标准化以及各个产品之间统一的规范。这是需要整个生态来支撑的,不是某一家自己能做的。希望我们能够共同改变一些东西,真正把(多媒体技术服务)做到标准化、灵活化。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/342216.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【面试深度解析】字节后端日常实习一面这么问吗?

🌈🌈🌈🌈🌈🌈🌈🌈 欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术的推送! 在我后台回复…

上门回收小程序,打造回收新模式

近年来,我国一直秉持着环保绿色的发展理念,为了减少资源浪费,旧物回收成为了人们处理废弃物品的方式。目前,我国回收市场规模大约能达到3.58亿元,在我国经济的稳定增长和环保意识的提高下,回收市场规模还将…

力扣每日一题 --- 972. 相等的有理数

本题中的一个难点是怎么判断是否相等,如果自己写判断的话是不是很麻烦,判断整数之后再去判断小数部分,那么我们这题的另一个难点就要登场了,第一个难点让本题的情况变得复杂,第二个难点让本题变得很难想到怎么判断&…

网络安全B模块(笔记详解)- 内存取证

1.从内存文件中获取用户admin的密码并破解,将该密码作为flag值提交(密码长度为6个字符); 2.获取内存文件中系统的IP地址,将IP地址作为flag值提交; 3.获取内存文件中系统的主机名,将主机名作为flag值提交; 4.内存文件的系统中存在挖矿进程,将矿池的IP地址作为flag值提…

qml:FocusInput、TextInput 键盘输入

有2个输入框,默认焦点在第一个输入框,按Tab键可以在两个输入框之间来回切换。 FocusInput.qml import QtQuickFocusScope { //显式创建焦点范围width: 200height: 40x: 20y: 20property alias text: input.textproperty alias input: inputRectangle…

DNA序列修正*

题目 import java.util.HashMap; import java.util.Map; import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt();sc.nextLine();char[] sq1 sc.next().toCharArray();sc.nextLine(…

低代码(Low-Code)技术简化开发难度,快速搭建应用

目录 一、低代码技术定义 二、低代码技术优势 1.提高企业的工作效率 2.降低企业的开发成本 3.提高应用程序和业务流程的质量 三、稳定性和生产率的最佳实践 三、最后 随着数字化时代的到来,低代码(Low-Code)技术已经成为了企业数字化转…

科技、文化与旅游的融合创新:智慧文旅的未来之路

在当今社会,科技、文化与旅游的融合已经成为文旅产业转型升级的重要趋势。这种融合不仅有助于提升文旅产业的核心竞争力,更有助于推动产业的数字化转型和可持续发展。 本文将深入探讨科技、文化与旅游的融合创新,以及智慧文旅场景的解决方案…

使用 Swift 代码优化项目编译速度

引言 软件的性能是评价一个软件质量的重要指标,尤其在今天这个时代,性能已成为大型项目不可或缺的考虑因素之一。对于用户量极大的软件,如网银系统、在线购物商城等,更是必须保证其高效稳定的性能。在这种背景下,优化…

【MySQL·8.0·源码】subquery 子查询处理分析(一)

引言 在 SQL 中,子查询属于 Nested Query 的一种形式,根据 Kim 的分类[1],Nested Query 即嵌套查询是一种 SQL-like 形式的查询语句嵌套在另一 SQL 中,SQL-like 的嵌套子句可以出现在 SELECT、FROM 和 WHERE 子句的任意位置。 在…

C++: vector

目录 1.vector的介绍 2.vector常用的接口 1.vector构造 2.迭代器iterator的使用 3.vector空间增长 4.vector的增删改查 3.vector模拟实现 如果在reverse时使用memcpy会怎么样? 1.vector的介绍 C中的vector是一个动态数组容器,可以存储任意类型的…

【算法分析与设计】二叉树的层序遍历

📝个人主页:五敷有你 🔥系列专栏:算法分析与设计 ⛺️稳中求进,晒太阳 题目 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点&#xf…

Python 自动化办公:一键批量生成 PPT

Stata and Python 数据分析 一、导读 在实际工作中,经常需要批量处理Office文件,比如需要制作一个几十页的PPT进行产品介绍时,一页一页地制作不仅麻烦而且格式可能不统一。那么有什么办法可以一键生成PPT呢?Python提供的pptx 包…

Simulink|光伏并网逆变器低电压穿越仿真模型

目录 主要内容 模型研究 1.模型总览 2.boost模块 3.Inverter模块 4.控制模块 5.信号模块 结果一览 下载链接 主要内容 该模型为光伏逆变器低电压穿越仿真模型,采用boost加NPC拓扑结构,基于MATLAB/Simulink建模仿真。模型具备中点平衡…

灭火图 - 故障发现和定位的入口

通过深入分析和解决企业在可观测性和稳定性保障方面的挑战,Flashcat 提出了“灭火图”这一关键概念。 灭火图以服务/模块/基础组件/基础设施等为维度,以聚合的视角实时度量某个特定维度的可用性(典型指标包括时延、流量、错误、饱和度&#x…

���恒峰|配网行波型故障预警定位装置:电力系统的守护神

���在电力系统中,设备的正常运行对于保障供电至关重要。而配网行波型故障预警定位装置就是电力系统的守护神,它能够实时监测设备状态,提前发现故障,确保电力供应的稳定。本文将详细介绍配网行波…

Gradle 笔记

Gradle依赖管理(基于Kotlin DSL) **注意:**如果不是工作原因或是编写安卓项目必须要用Gradle,建议学习Maven即可,Gradle的学习成本相比Maven高很多,而且学了有没有用还是另一回事,所以&#xff…

【网络】传输层TCP协议

目录 一、概述 2.1 运输层的作用引出 2.2 传输控制协议TCP 简介 2.3 TCP最主要的特点 2.4 TCP连接 二、TCP报文段的首部格式 三、TCP的运输连接管理 3.1 TCP的连接建立(三次握手) 3.2 为什么是三次握手? 3.3 为何两次握手不可以呢? 3.4 TCP的…

【KD】2023 NeurIPS Does Graph Distillation See Like Vision Dataset Counterpart?

简介 在大规模图数据集上进行GNN训练是一个艰巨的挑战。特别是在增量学习和图结构搜索这些经常需要重复训练的场景中,训练图模型不仅消耗大量时间,还对显存和计算能力提出了严峻要求。最近,图数据集蒸馏/图压缩(Graph Dataset Distillation / Graph Condensation)方法…

Harmony 鸿蒙驱动开发

驱动开发 驱动模型介绍 HDF(Hardware Driver Foundation)框架以组件化的驱动模型作为核心设计思路,为开发者提供更精细化的驱动管理,让驱动开发和部署更加规范。HDF框架将一类设备驱动放在同一个Host(设备容器&#…