IMX6ULL|GPIO子系统

一.GPIO子系统

GPIO是General Purpose I/O的缩写,即通用输入输出端口,简单来说就是MCU/CPU可控制的引脚,这些引脚通常有多种功能,最基本的是高低电平输入检测和输出,部分引脚还会与主控器的片上外设绑定,如作为串口、I2C、网络、电压检测的通讯引脚。

与LED子系统类似,Linux提供了GPIO子系统驱动框架,使用该驱动框架可以把CPU的GPIO引脚导出到用户空间,用户通过访问/sys文件系统进行控制,GPIO子系统支持把引脚用于基本的输入输出功能,其中输入功能还支持中断检测。在Linux内核源码的“Documentation/gpio”目录可找 到关于GPIO子系统的说明。

通过GPIO子系统可以控制LED、蜂鸣器以及按键检测这类硬件设备,不过由于本开发板出厂的默认镜像中,LED灯使用了LED子系统驱动控制,按键使用了input输入子系统驱动控制,不方便在用户空间使用GPIO的方式进行实验,而蜂鸣器在驱动层中我们是使用GPIO子系统的,本章选择蜂鸣器作为示例讲解。

在Mini开发板上没有蜂鸣器,实验时可使用电压表检测对应引脚的电平输出。

二.GPIO设备目录

GPIO驱动子系统导出到用户空间的目录是/sys/class/gpio

可使用如下命令查看:

#在主机或开发板的终端使用以下命令查看
ls -lh /sys/class/gpio

#以下命令不支持在Ubuntu主机上运行
#导出GPIO到用户空间
echo 19 > /sys/class/gpio/export
#查看目录的变化,增加了gpio19目录
ls /sys/class/gpio/
#把gpio19从用户空间中取消导出
echo 19 > /sys/class/gpio/unexport
#查看目录变化,gpio19目录消失了
ls /sys/class/gpio/

如下图:
在这里插入图片描述

该目录下的主要内容说明如下:

  • export文件:导出GPIO,该文件只能写不能读,用户向该文件写 入GPIO的编号N可以向内核申请将该编号的GPIO导出到用户空间,若内核本 身没有把该GPIO用于其它功能,那么在/sys/class/gpio目录下会新增一 个对应编号的gpioN目录,如上图一导出了gpio19。

  • unexport文件:export的相反操作,取消导出GPIO,该文件同样只能 写不能读。上图演示了往unexport写入19后,gpio19目录消失了。

  • gpiochipX目录:该目录是指GPIO控制器外设,Ubuntu主机上默认没有这样的功能。

  • gpioN目录:通过export导出的具体GPIO引脚的控制目录,如上图中的gpio19目录下会包含有 控制该引脚的相应文件

三.GPIO设备属性

gpioN目录下相关的设备文件,可以使用以下命令查看:

#在开发板的终端使用以下命令
#导出编号为19的GPIO
echo 19 > /sys/class/gpio/export
#查看gpio19目录下的内容
ls -lh /sys/class/gpio/gpio19

如下图:
在这里插入图片描述

常用的属性文件介绍如下:

  1. direction文件:表示GPIO引脚的方向,它的可取值如下:

in:引脚为输入模式。

out:引脚为输出模式,且默认输出电平为低。

low:引脚为输出模式,且默认输出电平为低。

high:引脚为输出模式,且默认输出电平为高。

  1. value文件:

表示GPIO的电平,1表示高电平,0表示低电平。GPIO被配置为输出 模式, 那么修改该文件的内容可以改变引脚的电平。

  1. edge文件:用于配置GPIO的中断触发方式,当GPIO被配置为中断时,可以通过系统 的poll函数监听。edge文件可取如下的属性值:

none:没有使用中断模式。

rising:表示引脚为中断输入模式,上升沿触发。

falling:表示引脚为中断输入模式,下降沿触发。

both:表示引脚为中断输入模式,边沿触发

与LED子系统不同,当某个引脚被用于具体的LED设备时,该引脚会被设备占用,它的 功能在用户空间是无法再被修改的,而使用GPIO子系统的设备则可以在用户空间灵活配置作为输入、输出或中断模式。

只要我们知道蜂鸣器的GPIO引脚编号,就可以就可以通过它导出的direction、value文件 控制引脚输出高低电平,从而控制它发声了。当然,如果硬件上临时把该引脚修改为按键 高低电平检测,此时也可以通过这些文件把引脚改为输入模式使用,而不需要修改Linux内核驱动

四. 引脚编号转换

与LED驱动设备不一样,LED已经在内核驱动(设备树)绑定了具体引脚的端 口号,最终直接以设备名字导出到用户空间,所以控制时只要通过设备文件即可 控制,而不需要知道具体的硬件连接。使用GPIO子系统时,需要用户自主控制导出 使用哪个引脚,所以我们要根据蜂鸣器的硬件连接来进行实验。

如下图:

在这里插入图片描述

从上图可了解到,蜂鸣器的控制引脚名为“GPIO1_19”,该引脚输出高电平时,三极 管导通,蜂鸣器响,引脚输出低电平时,电路断开,蜂鸣器不响。

i.MX6ULL芯片GPIO引脚名格式通常为GPIOn_IOx,如此处的GPIO1_19或GPIO4_IO20等等,其 中n是端口号,x为该组端口的引脚号,本开发板采用的芯片有15组端口,每组端口包含的引脚从031不等。 本开发板中export文件使用的编号index与GPIO引脚名的转换关系如下:

index = GPIOn_IOx = (n-1)*32 + x

例如蜂鸣器使用的引脚编号为:index = GPIO1_19 = (1-1)*32 +19 = 19

又例如GPIO4_IO20的编号为:index = GPIO4_IO20 = (4-1)*32+20=116

要注意并不是所有的引脚都能通过export文件导出到用户空间的,例 如GPIO4_IO20引脚已经被用在了LED设备上

四.控制蜂鸣器(Shell)

下面使用命令行控制蜂鸣器,讲解GPIO子系统设备属性的应用。

由于在Ubuntu主机通常无法导出GPIO,请在开发板上执行以下命令测试,测试前需确保当前用户为root用户:

#以下命令在开发板上执行
#导出蜂鸣器使用的GPIO到用户空间
echo 19 > /sys/class/gpio/export
#确认出现了gpio19设备目录
ls /sys/class/gpio/
#控制gpio19方向为输出
echo out > /sys/class/gpio/gpio19/direction
#控制gpio19输出高电平
echo 1 > /sys/class/gpio/gpio19/value
#控制gpio19输出低电平
echo 0 > /sys/class/gpio/gpio19/value

如下图:
在这里插入图片描述

命令执行的原理非常简单:

  • 把蜂鸣器的编号写入到export文件,导出GPIO设备。

  • 修改蜂鸣器设备属性direction文件值为out,把GPIO设置为输出方向。

  • 修改蜂鸣器设备属性文件value的值为1或0,控制蜂鸣器响或不响。

五.控制蜂鸣器(系统调用)

类似地,也可以通过系统调用的文件操作方式控制蜂鸣器。

工程中的beep_bsp.c文件包含了控制蜂鸣器相关的函数,见如下所示。

#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>

//arm-linux-gnueabihf-gcc
#define OFF "1"
#define ON "0"
#define OUT "out"
#define GPIO "19"

int beep_init(void)
{
    int fd = open("/sys/class/gpio/export", O_WRONLY);
    if (fd < 0)
        return 1;
    write(fd, GPIO, strlen(GPIO)); //产生GPIO1_19文件
    close(fd);

    fd = open("/sys/class/gpio/gpio" GPIO "/direction", O_WRONLY);
    if (fd < 0)
        return 2;
    write(fd, OUT, strlen(OUT)); //设置为输出模式,默认低电平
    close(fd);
    return 0;
}

int beep_on()
{
    int fd = open("/sys/class/gpio/gpio" GPIO "/value", O_WRONLY);
    if (fd < 0)
        return 1;
    write(fd, OFF, strlen(OFF));
    close(fd);
    return 0;
}

int beep_off()
{
    int fd = open("/sys/class/gpio/gpio" GPIO "/value", O_WRONLY);
    if (fd < 0)
        return 1;
    write(fd, ON, strlen(ON));
    close(fd);
    return 0;
}

int beep_deinit(void)
{
    int fd = open("/sys/class/gpio/unexport", O_WRONLY);
    if (fd < 0)
        return 1;
    write(fd, GPIO, strlen(GPIO)); //销毁GPIO1_19文件
    close(fd);
    return 0;
}

int main(int argc, char const *argv[])
{
    char buf[10];
    int res;
    printf("This is the beep demo\n");

    res = beep_init();
    if (res)
    {
        printf("beep init error,code = %d", res);
        return 0;
    }
    while (1)
    {
        printf("Please input the value : 0--off 1--on q--exit\n");
        scanf("%10s", buf);
        switch (buf[0])
        {
        case '0':
            beep_off();
            break;
        case '1':
            beep_on();
            break;
        case 'q':
            beep_deinit();
            printf("Exit\n");
            return 0;
        default:
            break;
        }
    }

    beep_deinit();
    return 0;
}

编译后生成的ARM平台程序为build_arm/beep_demo,使用网络文件系统共 享至开发板,在开发板的终端上运行该程序测试即可。
如下图:

在这里插入图片描述

程序执行后会提示输入,在终端输入1并回车后蜂鸣器会响,输入0并回车后蜂鸣器不响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341726.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

性能篇:解密Stream,提升集合遍历效率的秘诀!

大家好&#xff0c;我是小米&#xff0c;一个热爱技术分享的小伙伴。今天我们来聊一聊 Java 中的 Stream&#xff0c;以及如何通过 Stream 来提高遍历集合的效率。 什么是Stream&#xff1f; 在开始深入讨论之前&#xff0c;我们先来了解一下什么是 Stream。 Stream 是 Java…

微信如何批量自动加好友?用它就对了!

你还在手动逐一输入号码&#xff0c;再搜索添加好友吗&#xff1f;这样实在是太麻烦了&#xff0c;还很费时间&#xff0c;稍不注意就会出错。不妨试试这个微信批量自动添加好友工具&#xff0c;解放双手&#xff0c;提高加人效率&#xff01; 下面一起来看看如何操作吧&#…

(十一)Head first design patterns状态模式(c++)

状态模式 如何去描述状态机&#xff1f; 假设你需要实例化一台电梯&#xff0c;并模仿出电梯的四个状态&#xff1a;开启、关闭、运行、停止。也许你会这么写 class ILift{ public:virtual void open(){}virtual void close(){}virtual void run(){}virtual void stop(){} }…

机器学习实验1——朴素贝叶斯和逻辑回归分类Adult数据集

文章目录 &#x1f9e1;&#x1f9e1;实验内容&#x1f9e1;&#x1f9e1;&#x1f9e1;&#x1f9e1;数据预处理&#x1f9e1;&#x1f9e1;认识数据填充缺失值&#xff08;“ &#xff1f;”&#xff09;将income属性替换为0-1变量筛除无效属性编码和缩放 &#x1f9e1;&…

GC6208 5V摄像机镜头驱动芯片,为什么可以替代AN41908,适用于摄像机镜头上

GC6208是一个镜头电机驱动IC摄像机和安全摄像机。该装置集成了一个由PID控制的可变光圈直流电机驱动器和两个通道的扫描隧道显微镜电机驱动器&#xff0c;用于变焦和聚焦控制。AN41908A是一款用于摄像机和安全摄像机的镜头马达驱动IC&#xff0c;具有lris控制功能。电压驱动系统…

基于springboot+vue新能源汽车充电管理系统

摘要 新能源汽车充电管理系统是基于Spring Boot和Vue.js技术栈构建的一款先进而高效的系统&#xff0c;旨在满足不断增长的新能源汽车市场对充电服务的需求。该系统通过整合前后端技术&#xff0c;实现了用户注册、充电桩管理、充电订单管理等核心功能&#xff0c;为用户提供便…

bxCAN 工作模式

bxCAN 工作模式 bxCAN 有三种主要的工作模式&#xff1a;初始化、正常和睡眠。硬件复位后&#xff0c;bxCAN 进入睡眠模式以降低功耗&#xff0c;同时 CANTX 上的内部上拉电阻激活。软件将主控制寄存器&#xff08;CAN_MCR---CAN master control register&#xff09;的初始化…

HTML+CSS:3D轮播卡片

效果演示 实现了一个3D翻转的卡片动画&#xff0c;其中每个卡片都有不同的图片和不同的旋转角度。整个动画循环播放&#xff0c;无限次。整个页面的背景是一个占据整个屏幕的背景图片&#xff0c;并且页面内容被隐藏在背景图片之下。 Code <div class"container"…

高效构建Java应用:Maven的使用总结

一、Maven简介和快速入门 1.1 Maven介绍 Maven-Introduction Maven 是一款为 Java 项目构建管理、依赖管理的工具&#xff08;软件&#xff09;&#xff0c;使用 Maven 可以自动化构建、测试、打包和发布项目&#xff0c;大大提高了开发效率和质量。 总结&#xff1a;Maven…

09-微服务Sentinel整合GateWay

一、概述 在微服务系统中&#xff0c;网关提供了微服务系统的统一入口&#xff0c;所以我们在做限流的时候&#xff0c;肯定是要在网关层面做一个流量的控制&#xff0c;Sentinel 支持对 Spring Cloud Gateway、Zuul 等主流的 API Gateway 进行限流。 1.1 总览 Sentinel 1.6.…

在线英文字母大小写转换工具

在线英文字母大小写转换 - BTool在线工具软件&#xff0c;为开发者提供方便。在线快速转换一段英文内容的大小写格式&#xff0c;例如转为一般句子大小写、全部小写、全部大写、大小写交错或像是标题的首字大写等等格式。https://www.btool.cn/case-converter此工具可在线快速转…

【书生·浦语】大模型实战营——第六次作业

使用OpenCompass 评测 InterLM2-chat-chat-7B 模型在C-Eval数据集上的性能 环境配置 1. 创建虚拟环境 conda create --name opencompass --clone/root/share/conda_envs/internlm-base source activate opencompass git clone https://github.com/open-compass/opencompass cd…

【Redis数据类型】String实现及应用场景

文章目录 String1、介绍2、内部实现整数值embstr 编码字符串raw编码字符串 3、常用命令4、应用场景缓存对象常规计数分布式锁共享session信息 参考&#xff1a;小林Coding Redis九种数据类型 Redis 提供了丰富的数据类型&#xff0c;常见的有五种&#xff1a;String&#xff08…

C++ 之LeetCode刷题记录(十四)

&#x1f604;&#x1f60a;&#x1f606;&#x1f603;&#x1f604;&#x1f60a;&#x1f606;&#x1f603; 开始cpp刷题之旅。 依旧是追求耗时0s的一天。 88. 合并两个有序数组 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &…

打造出色的 Prometheus 监控系统,看完后薪资翻倍?

一、监控概念&误区 监控是管理基础设施和业务的核心工具&#xff0c;监控应该和应用程序一起构建和部署&#xff0c;没有监控&#xff0c;将无法了解你的系统运行环境&#xff0c;进行故障诊断&#xff0c;也无法阻止提供系统性的性能、成本和状态等信息。 误区&#xff1…

怎样的安全数据交换系统 可以支持信创环境?

首先&#xff0c;我来看看&#xff0c;什么是安全数据交换系统&#xff1f;安全数据交换系统是一种专门设计用于在不同网络环境之间安全传输数据的技术解决方案。它确保数据在传输过程中的完整性、机密性和可用性&#xff0c;同时遵守相关的数据保护法规和行业标准。 那么&…

软件设计师——法律法规(四)

&#x1f4d1;前言 本文主要是【法律法规】——软件设计师——法律法规的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304…

为什么MOS管很容易失效?有哪些失效?

在电子元件中&#xff0c;金属-氧化物半导体场效应晶体管&#xff08;MOS管&#xff09;是独特且重要&#xff0c;然而相比其他元件&#xff0c;MOS管很容易失效&#xff0c;导致电路无法正常运行&#xff0c;因此工程师必须查找原因并解决问题。 1、MOS管为什么很容易失效&…

Ubuntu之离线安装Gitlab,搭建私有代码仓库

Ubuntu之离线安装Gitlab,搭建私有代码仓库 文章目录 Ubuntu之离线安装Gitlab,搭建私有代码仓库1. 官网下载&#xff1a;2. 安装Gitlab3. 使用 1. 官网下载&#xff1a; https://packages.gitlab.com/gitlab/gitlab-ce wget下载地址&#xff1a; wget https://packages.gitla…

立体视觉几何 (二)

1.视差 2.立体匹配 立体匹配的基本概念: 匹配目标: 在立体匹配中&#xff0c;主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差&#xff08;Disparity&#xff09;: 视差 d 是右图像中对应像素 xr 和左图像中像素 xl 之间的水平位置差。视…