性能篇:解密Stream,提升集合遍历效率的秘诀!

大家好,我是小米,一个热爱技术分享的小伙伴。今天我们来聊一聊 Java 中的 Stream,以及如何通过 Stream 来提高遍历集合的效率。

什么是Stream?

在开始深入讨论之前,我们先来了解一下什么是 Stream。

Stream 是 Java 8 中引入的一种新的抽象概念,用于处理数据序列。它为我们提供了一种更加便捷、高效的方式来操作集合数据,实现了函数式编程的特性。在之前的 Java 版本中,我们通常使用迭代器或者循环来处理集合,代码显得冗长且难以阅读。而引入 Stream 后,我们可以采用声明式的方式描述数据的处理流程,使代码更加简洁、清晰。

Stream 的本质是一种数据流,它不是一种数据结构,因此不会改变原有的数据集合。相反,它提供了一系列的中间操作和终端操作,这些操作可以被串联起来形成一条处理流水线。中间操作用于对数据进行转换和处理,而终端操作则触发整个处理流程的执行,产生最终的结果。

使用 Stream,我们可以轻松进行各种操作,如筛选、映射、过滤、排序等,而无需手动编写繁琐的迭代代码。这种声明式的编程风格不仅提高了代码的可读性,还有助于并行处理,充分发挥多核 CPU 的性能优势。

以下是一个简单的代码示例,演示了使用Stream对集合进行过滤、映射和打印操作的好处:

这个简单的示例展示了Stream的优势,实际应用中,Stream还可以进行更复杂的操作,如分组、排序等,为集合处理提供了更多灵活性。

Stream操作分类

在使用 Stream 进行集合操作时,我们通常将其分为两种操作:中间操作和终端操作。

中间操作是在数据源上进行的转换和处理,但并不立即触发流的遍历。这些操作包括 filtermapdistinct 等。通过 filter 我们可以轻松筛选出符合条件的元素,而 map 则用于转换元素,使得处理过程更为灵活。

在上述示例中,filter 用于选择偶数,map 则将这些偶数平方,形成了中间操作的链式调用。

终端操作是触发流的遍历并产生最终结果的操作,结束流的处理。这些操作包括 forEachcollectreduce 等。通过 collect 我们可以将流中的元素收集到一个新的集合中。

在这个示例中,collect 将处理后的结果收集到一个新的列表中,结束了整个流的处理过程。

Stream源码实现

Stream 的源码实现是 Java 8 中引入的一项复杂而精妙的特性,它为处理集合数据提供了一种全新的方式。在深入探讨 Stream 的源码实现之前,我们首先需要了解几个关键的类和接口,它们构成了 Stream 操作的基础结构。

首先,BaseStream 接口是 Stream API 中的基础,它定义了一些基本的操作,例如串行执行和并行执行。这个接口为不同类型的 Stream,如 StreamIntStreamDoubleStream 等提供了一致的接口定义,使得操作在不同类型的流之间能够得到复用。

接着,AbstractPipeline 类是 Stream 的核心类之一,它封装了操作的基本逻辑,包括遍历、过滤等。这个类为具体的操作提供了抽象基类,简化了新操作的添加。它还定义了流水线的基本结构,使得我们能够串联多个操作形成一个完整的处理流程。

在针对对象引用流的处理中,ReferencePipeline 继承自 AbstractPipeline,通过一系列方法(如 filtermap 等)生成不同类型的中间操作,形成操作链。而 Sink 类则负责接收元素并进行实际的处理。这种流水线的设计充分体现了函数式编程的思想,每个操作都是不可变的,而且在进行终端操作前,中间操作只是构建了一个操作链而并未实际执行。

在具体的操作实现中,以 filter 为例,通过 ReferencePipeline 类的 filter 方法生成一个新的流水线,其中定义了过滤的逻辑,形成了一个中间操作。这个设计使得我们能够以链式的方式组织多个操作,从而更加灵活地构建数据处理流程。

Stream操作叠加源码解析

在实际应用中,我们常常需要对集合进行多个操作,这时候就涉及到 Stream 操作的叠加。通过源码解析,我们可以深入了解这一过程的执行。

首先,让我们看一下一个简单的例子:

这个例子中,我们对数字集合进行了筛选(filter)和映射(mapToInt)的两个操作,然后求和。让我们逐步分析这个过程。

filter操作

首先,filter 操作创建了一个新的 Stream,其中包含了符合条件的元素。这是通过 ReferencePipeline 类的 filter 方法实现的,具体代码如下:

这段代码展示了如何创建一个新的 Stream,其中的 Sink 对象通过 predicate.test(u) 来判断是否满足条件,然后将符合条件的元素传递给下游。

mapToInt操作

接着,mapToInt 操作对上一个操作的结果进行了映射,将元素乘以2。这是通过 ReferencePipeline 类的 mapToInt 方法实现的,具体代码如下:

这段代码展示了如何创建一个新的 IntStream,其中的 Sink 对象通过 mapper.applyAsInt(u) 来进行映射操作,将元素乘以2后传递给下游。

sum操作

最后,sum 操作对上一个操作的结果进行了求和。这是通过 SummingInt 类的 evaluate 方法实现的,具体代码如下:

这段代码展示了如何对映射后的元素进行求和操作,最终得到结果。

通过这个简单的例子,我们可以看到 Stream 操作的叠加是通过创建新的 Stream,并在每个操作的 Sink 中对元素进行处理和传递的。这种链式调用的方式使得我们可以灵活组合多个操作,构建出复杂的数据处理流程。

Stream并行处理源码解析

Stream 的一个显著特点是能够支持并行处理。在多核 CPU 的环境下,Stream 的并行迭代方式可以显著提高性能。通过分析源码,我们可以了解并行处理是如何实现的,以及在何种场景下使用更为合适。

首先,让我们看一个简单的例子:

在这个例子中,我们使用了 parallelStream() 方法将 Stream 转换为并行流,然后进行映射和求和操作。接下来,我们将逐步分析这个过程。

parallelStream操作

首先,parallelStream() 方法是通过 BaseStream 接口的 parallel() 方法实现的,具体代码如下:

这段代码通过 StreamSupport.stream(spliterator(), true) 来创建一个支持并行的 Stream。

并行处理的实现

在并行处理过程中,Stream 会被分割成多个子任务,每个子任务在一个独立的线程中执行。这是通过 ForkJoinTask 框架实现的,具体代码如下:

invoke() 方法用于执行任务,每个子任务都是一个 ForkJoinTask,它们会在多个线程中同时执行,最后将结果合并起来。

并行处理的Sink

在并行处理中,每个子任务都有自己的 Sink 对象,用于处理元素。这是通过 ForkingSink 类实现的,具体代码如下:

ForkingSink 中的 accept() 方法用于接收元素,然后通过 split() 方法将任务进行分割。

通过这个简单的例子,我们可以看到 Stream 的并行处理是通过 ForkJoin 框架实现的,每个子任务都在独立的线程中执行,最后将结果合并。这种方式能够更好地利用多核 CPU 的性能,提高处理速度。

性能测试

为了更直观地比较两者的性能,我们使用JMH(Java Microbenchmarking Harness)进行测试。

以下是一个简单的示例代码,假设我们有一个包含一系列数字的列表,我们将对这些数字进行过滤,然后按照奇偶性进行分组:

测试结论:

通过以上测试结果,我们可以看到:

  • 在循环迭代次数较少的情况下,常规的迭代方式性能反而更好;
  • 在单核 CPU 服务器配置环境中,也是常规迭代方式更有优势;
  • 而在大数据循环迭代中,如果服务器是多核 CPU 的情况下,Stream 的并行迭代优势明显。

所以我们在平时处理大数据的集合时,应该尽量考虑将应用部署在多核 CPU 环境下,并且使用 Stream 的并行迭代方式进行处理。

总结

用事实说话,我们看到其实使用 Stream 未必可以使系统性能更佳,还是要结合应用场景进行选择,也就是合理地使用 Stream。

总的来说,Stream 是一个强大而灵活的工具,但并不是适用于所有场景。在选择使用 Stream 时,我们需要根据实际情况进行权衡和取舍。

通过深入了解 Stream 的底层实现,我们可以更好地运用这一特性,提高代码的可读性和性能。

END

希望本篇文章能够帮助大家更好地理解和使用 Stream,欢迎大家在评论区分享自己的见解和经验。如果有其他技术话题感兴趣,也欢迎留言提出,我们一起探讨学习!感谢大家的阅读!

如有疑问或者更多的技术分享,欢迎关注我的微信公众号“知其然亦知其所以然”!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341724.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信如何批量自动加好友?用它就对了!

你还在手动逐一输入号码,再搜索添加好友吗?这样实在是太麻烦了,还很费时间,稍不注意就会出错。不妨试试这个微信批量自动添加好友工具,解放双手,提高加人效率! 下面一起来看看如何操作吧&#…

(十一)Head first design patterns状态模式(c++)

状态模式 如何去描述状态机? 假设你需要实例化一台电梯,并模仿出电梯的四个状态:开启、关闭、运行、停止。也许你会这么写 class ILift{ public:virtual void open(){}virtual void close(){}virtual void run(){}virtual void stop(){} }…

机器学习实验1——朴素贝叶斯和逻辑回归分类Adult数据集

文章目录 🧡🧡实验内容🧡🧡🧡🧡数据预处理🧡🧡认识数据填充缺失值(“ ?”)将income属性替换为0-1变量筛除无效属性编码和缩放 🧡&…

GC6208 5V摄像机镜头驱动芯片,为什么可以替代AN41908,适用于摄像机镜头上

GC6208是一个镜头电机驱动IC摄像机和安全摄像机。该装置集成了一个由PID控制的可变光圈直流电机驱动器和两个通道的扫描隧道显微镜电机驱动器,用于变焦和聚焦控制。AN41908A是一款用于摄像机和安全摄像机的镜头马达驱动IC,具有lris控制功能。电压驱动系统…

基于springboot+vue新能源汽车充电管理系统

摘要 新能源汽车充电管理系统是基于Spring Boot和Vue.js技术栈构建的一款先进而高效的系统,旨在满足不断增长的新能源汽车市场对充电服务的需求。该系统通过整合前后端技术,实现了用户注册、充电桩管理、充电订单管理等核心功能,为用户提供便…

bxCAN 工作模式

bxCAN 工作模式 bxCAN 有三种主要的工作模式:初始化、正常和睡眠。硬件复位后,bxCAN 进入睡眠模式以降低功耗,同时 CANTX 上的内部上拉电阻激活。软件将主控制寄存器(CAN_MCR---CAN master control register)的初始化…

HTML+CSS:3D轮播卡片

效果演示 实现了一个3D翻转的卡片动画&#xff0c;其中每个卡片都有不同的图片和不同的旋转角度。整个动画循环播放&#xff0c;无限次。整个页面的背景是一个占据整个屏幕的背景图片&#xff0c;并且页面内容被隐藏在背景图片之下。 Code <div class"container"…

高效构建Java应用:Maven的使用总结

一、Maven简介和快速入门 1.1 Maven介绍 Maven-Introduction Maven 是一款为 Java 项目构建管理、依赖管理的工具&#xff08;软件&#xff09;&#xff0c;使用 Maven 可以自动化构建、测试、打包和发布项目&#xff0c;大大提高了开发效率和质量。 总结&#xff1a;Maven…

09-微服务Sentinel整合GateWay

一、概述 在微服务系统中&#xff0c;网关提供了微服务系统的统一入口&#xff0c;所以我们在做限流的时候&#xff0c;肯定是要在网关层面做一个流量的控制&#xff0c;Sentinel 支持对 Spring Cloud Gateway、Zuul 等主流的 API Gateway 进行限流。 1.1 总览 Sentinel 1.6.…

在线英文字母大小写转换工具

在线英文字母大小写转换 - BTool在线工具软件&#xff0c;为开发者提供方便。在线快速转换一段英文内容的大小写格式&#xff0c;例如转为一般句子大小写、全部小写、全部大写、大小写交错或像是标题的首字大写等等格式。https://www.btool.cn/case-converter此工具可在线快速转…

【书生·浦语】大模型实战营——第六次作业

使用OpenCompass 评测 InterLM2-chat-chat-7B 模型在C-Eval数据集上的性能 环境配置 1. 创建虚拟环境 conda create --name opencompass --clone/root/share/conda_envs/internlm-base source activate opencompass git clone https://github.com/open-compass/opencompass cd…

【Redis数据类型】String实现及应用场景

文章目录 String1、介绍2、内部实现整数值embstr 编码字符串raw编码字符串 3、常用命令4、应用场景缓存对象常规计数分布式锁共享session信息 参考&#xff1a;小林Coding Redis九种数据类型 Redis 提供了丰富的数据类型&#xff0c;常见的有五种&#xff1a;String&#xff08…

C++ 之LeetCode刷题记录(十四)

&#x1f604;&#x1f60a;&#x1f606;&#x1f603;&#x1f604;&#x1f60a;&#x1f606;&#x1f603; 开始cpp刷题之旅。 依旧是追求耗时0s的一天。 88. 合并两个有序数组 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m 和 n &…

打造出色的 Prometheus 监控系统,看完后薪资翻倍?

一、监控概念&误区 监控是管理基础设施和业务的核心工具&#xff0c;监控应该和应用程序一起构建和部署&#xff0c;没有监控&#xff0c;将无法了解你的系统运行环境&#xff0c;进行故障诊断&#xff0c;也无法阻止提供系统性的性能、成本和状态等信息。 误区&#xff1…

怎样的安全数据交换系统 可以支持信创环境?

首先&#xff0c;我来看看&#xff0c;什么是安全数据交换系统&#xff1f;安全数据交换系统是一种专门设计用于在不同网络环境之间安全传输数据的技术解决方案。它确保数据在传输过程中的完整性、机密性和可用性&#xff0c;同时遵守相关的数据保护法规和行业标准。 那么&…

软件设计师——法律法规(四)

&#x1f4d1;前言 本文主要是【法律法规】——软件设计师——法律法规的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304…

为什么MOS管很容易失效?有哪些失效?

在电子元件中&#xff0c;金属-氧化物半导体场效应晶体管&#xff08;MOS管&#xff09;是独特且重要&#xff0c;然而相比其他元件&#xff0c;MOS管很容易失效&#xff0c;导致电路无法正常运行&#xff0c;因此工程师必须查找原因并解决问题。 1、MOS管为什么很容易失效&…

Ubuntu之离线安装Gitlab,搭建私有代码仓库

Ubuntu之离线安装Gitlab,搭建私有代码仓库 文章目录 Ubuntu之离线安装Gitlab,搭建私有代码仓库1. 官网下载&#xff1a;2. 安装Gitlab3. 使用 1. 官网下载&#xff1a; https://packages.gitlab.com/gitlab/gitlab-ce wget下载地址&#xff1a; wget https://packages.gitla…

立体视觉几何 (二)

1.视差 2.立体匹配 立体匹配的基本概念: 匹配目标: 在立体匹配中&#xff0c;主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差&#xff08;Disparity&#xff09;: 视差 d 是右图像中对应像素 xr 和左图像中像素 xl 之间的水平位置差。视…

go 语言中 json.Unmarshal([]byte(jsonbuff), j) 字节切片得使用场景

struct_tag的使用 在上面的例子看到&#xff0c;我们根据结构体生成的json的key都是大写的&#xff0c;因为结构体名字在go语言中不大写的话&#xff0c;又没有访问权限&#xff0c;这种问题会影响到我们对json的key的名字&#xff0c;所以go官方给出了struct_tag的方法去修改…