【博士每天一篇论文-综述】Deep Echo State Network (DeepESN)_ A Brief Survey

阅读时间:2023-11-22

1 介绍

年份:2017
作者:C. Gallicchio 比萨大学计算机科学系终身教授助理教授,A. Micheli,比萨大学计算机科学系
期刊: ArXiv
引用量:68
这是两个大牛的论文,两位作者也是在2017到2018年期间发表了多篇ESN的研究。该文概述了DeepESN(深度回声状态网络)在开发、分析和应用方面的进展。DeepESN是一种专门用于处理时间数据的深度递归神经网络(RNN)。它是Echo State Network(ESN)模型的延伸,ESN模型是一种设计高效训练的RNN的先进方法。DeepESN利用堆叠的递归层的分层组合来开发时间信息的多个时间尺度表示。
这篇论文讨论了DeepESN的属性和动力学,以及其优点和缺点。它还探讨了层叠在RNN架构设计中的作用及其对网络动力学的影响。作者回答了与堆叠层次的好处、RNN层叠的架构效果以及使用有效训练的储备计算(RC)方法设计深度递归模型的潜力有关的一些基本问题。

image.png
image.png

2 创新点

  1. DeepESN模型的引入和层次结构:论文介绍了DeepESN模型的基本特征,即它是一种深度循环神经网络,通过堆叠多个递归层来表示时间信息的多个时间尺度。这种层次结构使得DeepESN能够更有效地处理时间数据。
  2. 网络层叠对RNN的影响:论文通过实证调查和实验分析,揭示了层叠层对于DeepESN模型中的时间数据表示具有积极影响。层叠层的设计不仅有助于实现多时间尺度表示,还提高了未监督的储层自适应和网络设计的效果。
  3. DeepESN在时间数据处理方面的优势:论文指出,DeepESN模型能够将Echo State Network (ESN)方法的优势扩展到深度递归结构中,为处理时间数据提供了一种高效的方法。DeepESN在预测任务、记忆能力任务和多频率分类任务等合成数据和真实世界问题中取得了比浅层Reservoir架构更好的性能。
  4. 深度递归模型在结构化领域中的应用:论文还介绍了DeepESN模型在结构化数据领域的扩展,如Deep Tree Echo State Network (DeepTESN) 和 Graph Neural Networks (FDGNNs)。这些模型在处理树形和图形数据方面取得了很好的结果,并超过了传统方法的性能。

这些创新点表明DeepESN模型在处理时间数据以及结构化数据方面具有潜力,并且相比传统的储层网络结构有一定的优势。

3 相关研究

  1. 深度残差脉动神经网络(DeepESN)模型通过层级嵌套的储备池结构,实现了多时间尺度的时间信息表示。它通过实证研究分析了层级嵌套储备池的效果,并展示了层级嵌套对未监督储备池自适应的增强效果。参考文献:[25]、[26]。
  2. 对线性激活函数的深度ESN状态进行了频率分析,并发现在深度ESN的状态中存在多重频率表示。即使在简化的线性设置下,逐层深入的储备池将越高层次越关注于越低的频率。研究还表明,在多重叠振荡器(MSO)任务上,深度ESN在预测性实验中比现有研究成果提高了数个数量级。参考文献:[39]。
  3. 将回声状态性质(ESP)的基本RC条件推广到深度RC网络的情况。通过对嵌套动态系统的稳定性和收敛性的研究,提出了深度RNN体系结构中回声状态性质成立的充分条件和必要条件。这项工作为DeepESN的定义、有效性和使用提供了重要的概念和实用工具。参考文献:[36]。
  4. 深度树回声状态网络(Deep Tree Echo State Network, DeepTESN)模型是用于结构化领域学习的深度RC框架的扩展。它结合了深度学习、树学习和RC训练效率。DeepTESN已被证明在文档处理和计算生物学的挑战性任务中具有优势,超过了以前最先进的结果。该模型扩展了水库操作,实现了离散树形结构上的状态转换系统,并为树形结构数据提供了Echo state Property的泛化。是设计深度神经网络用于分层结构数据学习的有效方法。参考文献[45,46]。
  5. 深度RC方法也有利于图数据的学习,导致快速和深度图神经网络(fdgnn)的发展。在[48]中引入了在离散图结构上运行的油藏的概念,并且可以使用图嵌入稳定性(GES)特性来研究由此产生的动力学的稳定性,fdgnn在图分类任务中显示了最先进的准确性,并且比文献模型更快,在训练时间上提供了显着的加速。参考文献[47][48]。
  6. DeepESN在合成任务中表现优于浅层油藏架构,如macky - glass下一步预测任务、短期记忆容量任务、MSO任务和基于频率的分类任务,在现实世界的应用中也很有效,如环境辅助生活、医疗诊断、语音和音乐处理、气象预报、能源预测、交通预测和金融市场预测。参考文献[25,27,39,44,49][50-60]。

参考文献:
[25] C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: A critical experimental analysis
[26] C. Gallicchio, A. Micheli, Deep reservoir computing: A critical analysis, in: Proceedings of the 24th European Symposium on Artificial Neural Networks (ESANN)
[27] C. Gallicchio, A. Micheli, Why layering in Recurrent Neural Networks? a DeepESN survey, in: Proceedings of the 2018 IEEE International Joint Conference on Neural Networks (IJCNN),
[36]C. Gallicchio, A. Micheli, Echo state property of deep reservoir computing networks., Cognitive Computation
[39] C. Gallicchio, A. Micheli, L. Pedrelli, Hierarchical temporal representation in linear reservoir computing, in: A. Esposito, M. Faundez-Zanuy, F. C. Morabito, E. Pasero (Eds.),
[44] C. Gallicchio, A. Micheli, L. Pedrelli, Design of Deep Echo State Networks, Neural Networks 108 (2018) 33–47.
[45] C. Gallicchio, A. Micheli, Deep Reservoir Neural Networks for Trees, Information Sciences 480 (2019) 174–193.
[46] C. Gallicchio, A. Micheli, Deep Tree Echo State Networks, in: Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 499–506.
[47] C. Gallicchio, A. Micheli, Fast and deep graph neural networks., in: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), 2020, pp. 3898–3905.
[48] C. Gallicchio, A. Micheli, Graph echo state networks, in: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.
[49] C. Gallicchio, Short-term Memory of Deep RNN, in: Proceedings of the 26th European Symposium on Artificial Neural Networks (ESANN), 2018, pp. 633–638.
[50] C. Gallicchio, A. Micheli, Experimental analysis of deep echo state networks for ambient assisted living, in: Proceedings of the 3rd Workshop on Artificial Intelligence for Ambient Assisted Living (AIAAL 2017), colocated with the 16th International Conference of the Italian Association for Artificial Intelligence (AIIA 2017), 2017.
[51] C. Gallicchio, A. Micheli, L.Pedrelli, Deep Echo State Networks for Diagnosis of Parkinson’s Disease, in: Proceedings of the 26th European Symposium on Artificial Neural Networks (ESANN), 2018, pp. 397–402.
[52]C. Gallicchio, A. Micheli, L. Pedrelli, Comparison between DeepESNs and gated RNNs on multivariate time-series prediction, in: 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2019), i6doc. com publication, 2019.

4 算法

介绍了一种深度回声状态网络(Deep Echo State Network,DeepESN)模型。与标准的浅层ESN模型类似,DeepESN由动态储备组件和前馈读出部分组成。储备组件将输入历史嵌入到丰富的状态表示中,并利用储备提供的状态编码计算输出。深度ESN的储备被组织成一个堆叠的循环层的层次结构,在每个时间步骤中,状态计算从第一层开始,直到储备架构中的最高层。每个层的输出作为下一层的输入。该模型可以被视为一个输入驱动的离散时间非线性动力系统,其中全局状态的演化由状态转移函数F决定。每个层的状态动态由F控制。通过使用漏积分器储备单元,并忽略偏差项,论文给出了DeepESN储备的数学描述。与浅层ESN/RNN相比,DeepESN的储备架构被限制在图中所示的三种连接约束条件下,这些约束条件对信息流和状态动力学产生影响。深度ESN架构可以被看作是对相应的单层ESN的简化,降低了绝对数量的循环权重。然而,这种特殊的架构组织方式影响了时间信息的处理。
image.png

深度回声状态网络的储层结构

Deep Echo State Network(DeepESN)的分层储备器架构。与浅层ESN/RNN相比,DeepESN的储备器架构被解释为具有相同总循环单元数量的标准浅层ESN/RNN的受限版本。包含几个约束,以获得分层架构。首先,所有从输入层到高于第1层的储备器层的连接都被删除(影响逐渐远离输入层的循环单元逐渐感知到外部输入信息的方式)。其次,所有来自较高层的连接到较低层的连接也被删除(这会影响信息的流动和网络状态的子部分的动态)。这些约束使DeepESN与浅层ESN/RNN相比具有不同的结构特点,并提供了一种层次化组成的储备器架构。
image.png

分层储备器架构

5 代码

https://github.com/lucasburger/pyRC?utm_source=catalyzex.com

6 思考

注意这篇开头提到的两位作者是ESN储层计算的大神,在这篇论文中就引用了自己的21篇相关论文。建议根据相关研究总结的论文,跟读研究一下。根据谷歌学术发表的论文可以看到,作者对于ESN的研究跨度是从2010年到2020年。
有源码的论文,可以复现和在这些基础上做进一步的改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341085.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

charles mac抓包unknown问题

第一步:mac上安装Charles后,mac安装证书: 第二步:mac上信任证书 第三步:手机上安装证书 安装提示:电脑上通过help–>SSLProxying–> Install Charles Root Ceriticate on a Mobile Device or Remote …

hadoop必记知识点(2)

6. hadoop集群计算的时候,什么是集群的主要瓶颈?展开说一下,生产遇到了什么问题? 在 Hadoop 集群进行计算时,可能会遇到多个瓶颈,但最主要的通常包括网络带宽、存储以及 CPU 处理能力。 网络带宽&#xf…

如何制作自己的实景中国视频地图?

让每一个人都有自己的地图! 我们在《水经微图Web版1.5.0发布》一文中,提到了水经微图(简称“微图”)Web版新增了视频气泡的功能。 现在,我们为你分享一下如何基于此功能,制作一个属于自己的实景中国视频地…

Axios取消请求:AbortController

AbortController AbortController() 构造函数创建了一个新的 AbortController 实例。MDN官网给出了一个利用AbortController取消下载视频的例子。 核心逻辑是:利用AbortController接口的只读属性signal标记fetch请求;然后在需要取消请求的时候&#xff0…

【XR806开发板试用】系列之一 - Linux环境下Ubuntu完全开发流程

前言 为了让极术社区开发者体验搭载安谋科技STAR-MC1处理器的面向IoT领域的全志XR806开发板,极术社区联合全志在线开发者社区共同推出XR806开发板免费试用活动。 极术社区特准备了200块XR806开发板作为2022年社区新年活动,申请的人数有600多&#xff0c…

分布式websocket IM聊天系统相关问题问答【第九期】

前言 上期视频讲解了自己关于聊天系统的设计的时候出现了一些不一样的声音。不了解情况的可以看上上期视频。这期主要是讨论。IM聊天系统设计方案多。我的先说明一下自己的技术背景互相之间才能更好的理解。 本期对应视频 目前已经写的文章有。并且有对应视频版本。 git项目地…

线性代数的学习和整理23:用EXCEL和python 计算向量/矩阵的:内积/点积,外积/叉积

目录 1 乘法 1.1 标量乘法(中小学乘法) 1.1.1 乘法的定义 1.1.2 乘法符合的规律 1.2 向量乘法 1.2.1 向量:有方向和大小的对象 1.2.2 向量的标量乘法 1.2.3 常见的向量乘法及结果 1.2.4 向量的其他乘法及结果 1.2.5 向量的模长(长度&#xff0…

安装向量数据库milvus可视化工具attu

使用docker安装的命令和简单就一个命令: docker run -p 8000:3000 -e MILVUS_URL{milvus server IP}:19530 zilliz/attu:v2.3.5sunyuhuasunyuhua-HKF-WXX:~/dockercom/milvus$ docker run -p 8000:3000 -e MILVUS_URL127.0.0.1:19530 zilliz/attu:latest yarn run…

扫地机器人(二分算法+贪心算法)

1. if(robot[i]-len<sweep)这个代码的意思是——如果机器人向左移动len个长度后&#xff0c;比现在sweep的位置&#xff08;现在已经覆盖的范围&#xff09;还要靠左&#xff0c;就是覆盖连续不起来&#xff0c;呢么这个len就是有问题的&#xff0c;退出函数&#xff0c;再…

微信小程序-03

小程序官方把 API 分为了如下 3 大类&#xff1a; 事件监听 API 特点&#xff1a;以 on 开头&#xff0c;用来监听某些事件的触发 举例&#xff1a;wx.onWindowResize(function callback) 监听窗口尺寸变化的事件 同步 API 特点1&#xff1a;以 Sync 结尾的 API 都是同步 API 特…

在全志H616核桃派上实现USB摄像头的OpenCV颜色检测

在给核桃派开发板用OpenCV读取图像并显示到pyqt5的窗口上并加入颜色检测功能&#xff0c;尝试将图像中所有蓝色的东西都用一个框标记出来。 颜色检测核心api 按照惯例&#xff0c;先要介绍一下opencv中常用的hsv像素格式。颜色还是那个颜色&#xff0c;只是描述颜色用的参数变…

【vscode】远程资源管理器自动登录服务器保姆级教程

远程资源管理器自动登录服务器 介绍如何配置本地生成rsa服务端添加rsa.pub配置config文件 介绍 vscode SSH 保存密码自动登录服务器 对比通过账号密码登录&#xff0c;自动连接能节约更多时间效率&#xff0c;且通过vim修改不容易发现一些换行或者引号导致的错误&#xff0c;v…

CentOS 7安装全解析:适合初学者的指导

目录 前言 一.centos安装 1.下载镜像文件 2.安装 二.远程连接&#xff0c;换源 1.下载并且使用MobaXtermMobaXterm free Xserver and tabbed SSH client for Windows (mobatek.net)https://mobaxterm.mobatek.net/ 远程连接 2.换源 前言 在当今的信息化时代&#xff0c…

使用Go语言编写简单的HTTP服务器

在Go语言中&#xff0c;我们可以使用标准库中的"net/http"包来编写HTTP服务器。下面是一个简单的示例&#xff0c;展示了如何使用Go编写一个基本的HTTP服务器。 go复制代码 package main import ( "fmt" "net/http" ) …

JavaScript DOM表单相关操作之获取表单数据的方式

在与表单相关的操作中&#xff0c;我们用的最多的就是获取表单中的数据。想要获取指定输入框的数据&#xff0c;首先就需要获取到这个输入框对象。 1、通过id属性获取表单数据 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><tit…

【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

1.介绍 Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation Swin-Unet&#xff1a;用于医学图像分割的类Unet纯Transformer 2022年发表在 Computer Vision – ECCV 2022 Workshops Paper Code 2.摘要 在过去的几年里&#xff0c;卷积神经网络&#xff…

java程序cpu飙高如何排查

一、使用传统jstack手法来排查 如何使用原生top命令、jstack命令来做定位具体代码的位置处理 1、简单步骤有下面几步 执行top命令&#xff0c;查看CPU占用情况&#xff0c;找到进程的pid(12002)使用 top -Hp <pid> 命令&#xff08;为Java进程的id号&#xff09;查看该…

System.Data.SqlClient.SqlException:“在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误

目录 背景: 过程: SQL Express的认识: 背景: 正在运行程序的时候&#xff0c;我遇到一个错误提示&#xff0c;错误信息如下&#xff0c;当我将错误信息仔细阅读了一番&#xff0c;信息提示的很明显&#xff0c;错误出现的来源就是连接数据库代码这块string connStr "s…

【教程】iOS Swift应用加固

&#x1f512; 保护您的iOS应用免受恶意攻击&#xff01;在本篇博客中&#xff0c;我们将介绍如何使用HTTPCORE DES加密来加固您的应用程序&#xff0c;并优化其安全性。通过以下步骤&#xff0c;您可以确保您的应用在运行过程中不会遭受数据泄露和未授权访问的风险。 摘要 …

网络防御保护——1.网络安全概述

一.网络安全概念 通信保密阶段 --- 计算机安全阶段 --- 信息系统安全 --- 网络空间安全 APT攻击 --- 高级持续性威胁 网络安全(网络空间安全--Cyberspace)从其本质上讲就是网络上的信息安全&#xff0c;指网络系统的硬件、软件及数据受到保护。不遭受破坏、更改、泄露&#xf…