【C++】类和对象(上篇)

在这里插入图片描述

文章目录

  • 🛟一、面向过程和面向对象初步认识
  • 🛟二、类的引入
  • 🛟三、类的定义
    • 📝1、类的两种定义方式
    • 📝2、成员变量命名规则的建议
  • 🛟四、类的访问限定符及封装
    • 🍩1、访问限定符
    • 🍩2、封装
  • 🛟五、类的作用域
  • 🛟六、类的实例化
  • 🛟七、类对象模型
    • 🍟1、如何计算类对象的大小
    • 🍟2、结构体内存对齐规则
  • 🛟八、this指针
    • 🍔1、this指针的引出
    • 🍔2、this指针的特性

在这里插入图片描述

🛟一、面向过程和面向对象初步认识

🚩C语言面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题
🚩C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成

🌰比如:
在这里插入图片描述
在这里插入图片描述

🛟二、类的引入

C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数。

🌰举个栗子看一下:👇

typedef int DataType;
struct Stack
{
	void Init(size_t capacity)
	{
		_array = (DataType*)malloc(sizeof(DataType) * capacity);
		if (nullptr == _array)
		{
			perror("malloc申请空间失败");
			return;
		}
		_capacity = capacity;
		_size = 0;
	}
	void Push(const DataType& data)
	{
		// 扩容
		_array[_size] = data;
		++_size;
	}
	DataType Top()
	{
		return _array[_size - 1];
	}
	void Destroy()
	{
		if (_array)
		{
			free(_array);
			_array = nullptr;
			_capacity = 0;
			_size = 0;
		}
	}
	DataType* _array;
	size_t _capacity;
	size_t _size;
};

int main()
{
	Stack s;
	s.Init(10);
	s.Push(1);
	s.Push(2);
	s.Push(3);
	cout << s.Top() << endl;
	s.Destroy();
	return 0;
}

☝️上面结构体的定义,在C++中更喜欢用 class 来代替

🛟三、类的定义

class Name
{
	// 类体:由成员函数和成员变量组成

};  // 一定要注意后面的分号

🍄class为定义类的关键字,Name为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略
🍄类体中内容称为类的成员,类中的变量称为类的属性或成员变量,类中的函数称为类的方法或者成员函数

📝1、类的两种定义方式

1️⃣声明和定义全部放在类体中(需注意:成员函数如果在类中定义,编译器可能会将其当成内联函数处理

class Person
{
public:
	//打印基本信息
	void Print()
	{
		cout _name << "-" << _sex << "-" << _age << endl;
	}

private:
	//成员变量在这里是声明(没有开空间),开了空间才是定义
	char* _name;
	char* _sex;
	int age;
};

2️⃣类声明放在.h文件中,成员函数定义放在.cpp文件中(需注意:成员函数名前需要加类名::

//声明放在头文件中
class Person {
public:
	//打印基本信息
	void Print();
	
private:
	char* _name;
	char* _sex;
	int age;
}
//定义放在类的实现文件Person.cpp中
#include "Person.h"

void Person::Print(){
	cout _name << "-" << _sex << "-" << _age << endl;
}

🫰一般情况下,更期望采用第二种方式。为了方便演示使用方式一定义类,大家后序学习工作中尽量使用第二种

📝2、成员变量命名规则的建议

🚩小tip:👇

// 我们看看这个函数,是不是很僵硬?
class Date
{
public:
	void Init(int year)
	{
		// 这里的year到底是成员变量,还是函数形参?
		year = year;
	}
private:
	int year;
};

// 所以一般都建议这样
class Date
{
public:
	void Init(int year)
	{
		_year = year;
	}
private:
	int _year;
};

// 或者这样
class Date
{
public:
	void Init(int year)
	{
		mYear = year;
	}
private:
	int mYear;
};

🔴其他方式也可以的,一般都是加个前缀或者后缀标识区分就行

🛟四、类的访问限定符及封装

🍩1、访问限定符

🍄C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用

在这里插入图片描述
🚩访问限定符说明:

  1. public修饰的成员在类外可以直接被访问
  2. protected和private修饰的成员在类外不能直接被访问(此处protected和private是类似的)
  3. 访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止
  4. 如果后面没有访问限定符,作用域就到 } 即类结束
  5. class的默认访问权限为private,struct为public(因为struct要兼容C)

🚨注意:访问限定符只在编译时有用,当数据映射到内存后,没有任何访问限定符上的区别

🌰【面试题】C++中struct和class的区别是什么?

解答:C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private

🍩2、封装

🍄将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互

封装本质上是一种管理,让用户更方便使用类。比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件
在这里插入图片描述
对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互即可。因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以及键盘插孔等,让用户可以与计算机进行交互即可

🌰【面试题】面向对象的三大特性:封装、继承、多态

🛟五、类的作用域

🍄类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 :: 作用域操作符指明成员属于哪个类域

class Person
{
public:
	void PrintPersonInfo();
private:
	char _name[20];
	char _gender[3];
	int  _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
	cout << _name << " " << _gender << " " << _age << endl;
}

🛟六、类的实例化

🍄用类类型创建对象的过程,称为类的实例化

  1. 类只是一个模型一样的东西,限定了类有哪些成员,定义出一个类并没有分配实际的内存空间来存储它
  2. 一个类可以实例化出多个对象,实例化出的对象占用实际的物理空间,存储类成员变量
  3. 就好比类就是房子设计图纸,而实例化对象就是房子。同样类也只是一个设计,实例化出的对象才能实际存储数据,占用物理空间

🛟七、类对象模型

🍟1、如何计算类对象的大小

❓类中既可以有成员变量,又可以有成员函数,那么一个类的对象中包含了什么?如何计算一个类的大小?

如果类对象包含类的各个成员,因为每个对象是不一样的,当调用同一份函数,如果按照此种方式存储,当一个类创建多个对象时,每个对象中都会保存一份代码,相同代码保存多次,浪费空间。所有标准规定对象只保存成员变量,成员函数存放在公共代码段

🌰请看下面这段代码👇

// 类中既有成员变量,又有成员函数
class A1 {
public:
	void f1() {}
private:
	int _a;
};

// 类中仅有成员函数
class A2 {
public:
	void f2() {}
};

// 类中什么都没有---空类
class A3
{};

int main()
{
	cout << sizeof(A1) << " " << sizeof(A2) << " " << sizeof(A3) << endl;

	return 0;
}

在这里插入图片描述

🚩结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐
🚩注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象(给空类一个byte不是为了存储数据,是占位,表示对象存在过)

🍟2、结构体内存对齐规则

  1. 第一个成员在与结构体偏移量为0的地址处
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处
    注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
    VS中默认的对齐数为8
  3. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

🛟八、this指针

🍔1、this指针的引出

🌰我们先来定义一个日期类 Date👇

class Date
{
public:
	void Init(int year, int month, int day)
	{
		_year = year;
		_month = month;
		_day = day;
	}
	
	void Print()
	{
		cout << _year << "-" << _month << "-" << _day << endl;
	}
private:
	int _year;   // 年
	int _month;   // 月
	int _day;    // 日
};

int main()
{
	Date d1, d2;
	d1.Init(2022, 1, 11);
	d2.Init(2022, 1, 12);
	d1.Print();
	d2.Print();

	return 0;
}

对于上述类,有这样的一个问题❓:

Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成

🍔2、this指针的特性

  1. this指针的类型:类类型* const,即成员函数中,不能给this指针赋值
  2. 只能在“成员函数”的内部使用
  3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给this形参。所以对象中不存储this指针
  4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传递,不需要用户传递
    在这里插入图片描述

🔴this指针本质是成员函数形参,自然存放在内存中的栈区中,不同编译器存放的位置不同,vs编译器是通过ecx寄存器存储的

🌰看下面这段代码👇

class A
{
public:
	void PrintA()
	{
		cout << _a << endl;
	}
private:
	int _a;
};
int main()
{
	A* p = nullptr;
	p->PrintA();

	return 0;
}

结果会是什么呢?
在这里插入图片描述
先不急解释,再看这一段代码👇

class A
{
public:
	void Show()
	{
		cout << "Show()" << endl;
	}
private:
	int _a;
};

int main()
{
	A* p = nullptr;
	p->Show();
 
	return 0;
}

还是不是同样会报错呢?
在这里插入图片描述
❓为什么都是空指针调用函数,结果却不一样?

🚨分析:

调用成员函数的时候会把成员地址也传过去,成员地址就是p指针,把p指针传过去,成员函数会用this指针接受传过来的地址,PrintA函数的this指针接收到的是空指针,然后用this指针去访问成员变量_a,这样就对空指针解引用了,所以会报错,调用Show函数没有对this指针去访问成员变量,只是简单把p传递给了this指针,也就不存在对空指针解引用,所以正常打印(成员函数的地址不在对象中存储,而是存储在公共代码段)

😍这期内容比较容易理解,希望烙铁们能理解消化,有所收获哦!

总结🥰
以上就是 【C++】类和对象(上篇) 的全部内容啦🥳🥳🥳🥳
本文章所在【C++初阶】专栏,感兴趣的烙铁可以订阅本专栏哦🥳🥳🥳
前途很远,也很暗,但是不要怕,不怕的人面前才有路。💕💕💕
小的会继续学习,继续努力带来更好的作品😊😊😊
创作写文不易,还多请各位大佬uu们多多支持哦🥰🥰🥰

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/339650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker(九)Docker Buildx

作者主页&#xff1a; 正函数的个人主页 文章收录专栏&#xff1a; Docker 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01; Docker Buildx Docker Buildx 是一个 docker CLI 插件&#xff0c;其扩展了 docker 命令&#xff0c;支持 [Moby BuildKit] 提供的功能。提…

Unity中实现捏脸系统

前言 目前市面上常见的捏脸一般是基于BlendShapes和控制骨骼点坐标两种方案实现的。后者能够控制的精细程度更高&#xff0c;同时使用BlendShapes来控制表情。 控制骨骼点坐标 比如找到控制鼻子的骨骼节点修改localScale缩放&#xff0c;调节鼻子大小。 BlendShapes控制表…

PLC网关BL121PO 实现低成本的PLC接入OPC UA的解决方案

随着工业4.0的迅猛发展&#xff0c;人们深刻认识到在工业生产和生活中&#xff0c;实时、可靠、安全的数据传输至关重要。在此背景下&#xff0c;高性能的工业自动化数据传输解决方案——协议转换网关应运而生&#xff0c;广泛应用于工业自动化和数字化工厂应用环境中。 无缝衔…

Linux 命令大全 CentOS常用运维命令

文章目录 1、Linux 目录结构2、解释目录3、命令详解3.1、shutdown命令3.1、文件目录管理命令ls 命令cd 命令pwd 命令tree 命令mkdir 命令touch 命令cat 命令cp 命令more 命令less 命令head 命令mv 命令rm 命令ln 命令tail 命令cut命令 3.2、用户管理useradd/userdel 命令用户的…

51单片机LED点阵屏

LED点阵屏 LED点阵屏是一种由许多小型LED灯组成的矩阵式显示屏。这些LED灯可以是单色、双色或全彩的&#xff0c;它们排列成行和列的网格&#xff0c;可以根据需要点亮来显示图像、文字或动画等内容。LED点阵屏广泛应用于户外广告牌、室内显示、交通信号灯、电子价格标签和其他…

[小程序]基于token的权鉴测试

一、服务器配置 服务器基于flask&#xff0c;需要额外安装flask_jwt_extended包 from flask import Flask #导入Flask包 from flask import request from flask import jsonify #用来返回json消息 from flask_jwt_extended import create_access_token, jwt_requi…

Docker(十)Docker Compose

作者主页&#xff1a; 正函数的个人主页 文章收录专栏&#xff1a; Docker 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01; Docker Compose 项目 Docker Compose 是 Docker 官方编排&#xff08;Orchestration&#xff09;项目之一&#xff0c;负责快速的部署分布式…

轻松打卡:使用Spring Boot和Redis Bitmap构建高效签到系统【redis实战 四】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 轻松打卡&#xff1a;使用Spring Boot和Redis Bitmap构建高效签到系统【redis实战 四】 引言(redis实战)前言回顾bitmap基本概念核心特性使用场景 为什么使用redis中的bitmap实现&#xff1f;1. 存储效…

探索全球DNS体系 | 从根服务器到本地解析

DNS 发展 DNS&#xff08;Domain Name System&#xff09;的起源可以追溯到互联网早期。 早期的挑战&#xff1a; 早期互联网主要通过IP地址进行通信&#xff0c;用户需要记住复杂的数字串来访问网站。 需求的催生&#xff1a; 随着互联网的扩大&#xff0c;更简单、易记的…

binary_search_tree的介绍与实现(二叉搜索树精美图示详解哦)

二叉搜搜索树 引言二叉搜索树的介绍二叉搜索树的实现框架默认成员函数构造析构赋值重载 InsertR&#xff08;插入&#xff09;EraseR&#xff08;删除&#xff09;SearchR&#xff08;查找&#xff09; 源码概览总结 引言 在C语言部分&#xff0c;我们已经认识了树与二叉树的结…

如何进行正确的 CodeReview

软件开发生命周期中至关重要的一步是代码审查。它使开发人员能够显著提升代码质量。它类似于书籍的创作过程。首先&#xff0c;作者写故事&#xff0c;然后经过编辑以确保不会出现诸如混淆“you’re”和“yours”之类的错误。在这个语境中&#xff0c;代码审查指的是检查和评估…

GPT应用程序的行业应用

GPT&#xff08;Generative Pre-trained Transformer&#xff09;应用程序在各个行业都有广泛的应用潜力&#xff0c;其自然语言生成的能力使其适用于多种场景。以下是一些行业中常见的GPT应用&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件…

【明道云】学习笔记1-了解APaaS

【背景】 APaaS (Application Platform As A Service) &#xff0c;即应用程序平台即服务&#xff0c;这是基于PaaS&#xff08;平台即服务&#xff09;的一种解决方案&#xff0c;支持应用程序在云端的开发、部署和运行&#xff0c;提供软件开发中的基础工具给用户&#xff0…

React Hooks 源码解析:useEffect

React Hooks 源码解析&#xff08;4&#xff09;&#xff1a;useEffect React 源码版本: v16.11.0源码注释笔记&#xff1a;airingursb/react 1. useEffect 简介 1.1 为什么要有 useEffect 我们在前文中说到 React Hooks 使得 Functional Component 拥有 Class Component 的…

三维重建(4)--三维重建与极几何

目录 一、三维重建基础 1、线性解法 2、非线性解法 3、多视图几何的关键问题 二、极几何 1、极几何关系 2、极几何特例 3、本质矩阵 4、本质矩阵的性质 5、基础矩阵 6、基础矩阵的性质 7、基础矩阵的作用 三、基础矩阵估计 1、八点法 2、归一化的八点法 四…

138.随机链表的复制(附带源码)

目录 一、思路分析 二、如何操作 三、源码 深拷贝&#xff1a;原封不动的拷贝一份 一、思路分析&#xff1a; 这一题&#xff0c;偏向于技巧性。如果是按照工科思维硬推&#xff0c;那会非常头大&#xff0c;脑袋瓜疼。 这一题目的核心难点在于&#xff1a;处理random指针…

BP蓝图映射到C++笔记1

教程链接&#xff1a;示例1&#xff1a;CompleteQuest - 将蓝图转换为C (epicgames.com) 1.常用的引用需要记住&#xff0c;如图所示。 2.蓝图中可以调用C函数&#xff0c;也可以实现C函数 BlueprintImplementableEvent:C只创建&#xff0c;不实现&#xff0c;在蓝图中实现 B…

日常常见应用组件升级记录

一、前言 因近期安全扫描&#xff0c;发现java后端应用涉及多个引用组件版本过低&#xff0c;涉及潜在漏洞利用风险&#xff0c;特记录相关处理升级处理过程&#xff0c;以备后续确认&#xff1b; 二、升级处理过程 2.1、Java类应用内置Spring Boot版本升级 Spring Boot是一…

python实现图片式PDF转可搜索word文档[OCR](已打包exe文件)

目录 1、介绍 1.1、痛点 1.2、程序介绍 2、安装方式 2.1、&#x1f53a;必要环节 2.2、脚本安装 2.2.1、不太推荐的方式 2.2.2、节约内存的方式 2.3、⭐完整版安装 3、使用 3.1、最终文件目录 3.2、主程序 3.2.1、绝对路径 3.2.2、是否为书籍 3.2.3、⭐截取区域 …

SpringCloudConfig+SpringCloudBus+Actuator+Git实现Eureka关键配置属性热更新(全程不重启服务)

文章目录 前言1.痛点2.解决方案3.具体实现3.1搭建热配置服务3.2编写配置文件3.3搭建版本控制仓库3.4Eureka-Client引入以下依赖3.5Eureka-Client微服务编写以下配置bootstrap.yml提前加载3.6分别编写测试Controller3.7测试效果3.8下线场景压测 4.SpringCloudBus优化 前言 在上…