Hadoop基本概论

目录

一、大数据概论

1.大数据的概念

2.大数据的特点

3.大数据应用场景

二、Hadoop概述

1.Hadoop定义

2.Hadoop发展历史

3.Hadoop发行版本

4.Hadoop优势

5.Hadoop1.x/2.x/3.x

6.HDFS架构

7.Yarn架构

8.MapReduce架构

9.大数据技术生态体系


一、大数据概论

1.大数据的概念

无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量高增长率多样化信息资产

大数据主要解决海量数据的采集存储分析计算问题

顺序存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

1Byte=8bit,1KB=1024Byte,1MB=1024KB......

2.大数据的特点

Volume(大量):典型个人计算机硬盘容量为TB量级,一些大型企业可以达到EB量级。

Velocity(高速):根据IDC的数字宇宙报告,预计2025年,全球数据使用量可以达到163ZB。

Variety(多样):数据可以分为结构化数据和非结构化数据。结构化数据主要以便于存储的数据库/文本为主;非结构化数据包含了网络日志、音频、视频、图片、地理位置信息等多类型数据,对于数据的处理能力具有更高要求。

Value(低价值密度):价值密度的高低与数据总量大小成反比。快速对有价值数据“提纯”成为目前大数据背景下待解决的难题

3.大数据应用场景

抖音、电商广告推荐、零售策略、保险(海量数据挖掘及风险预测...)、金融(多维体现用户推荐)、人工智能5G物联网方面等。

二、Hadoop概述

1.Hadoop定义

Hadoop是一个由Apache基金会所开发的分布式系统基础架构,主要解决海量数据的存储和海量数据的分析计算问题。

广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈

2.Hadoop发展历史

①Hadoop创始人Doug Cutting,为实现Google类似的全文搜索功能,在Lucene框架基础上进行优化升级,查询引擎和索引引擎。

②2001年底Lucene成为Apache基金会的一个子项目。

③对于海量数据的场景,Lucene框架面对与Google同样的困难:存储海量数据困难,检索海量速度慢。

④学习和模仿Google解决这些问题的办法:微型版Nutch。

⑤Google是Hadoop的思想源泉

⑥2003-2004年,Google公开GFs和MapReduce思想细节,Doug Cutting等人使用两年时间实现,使Nutch性能飙升。

⑦Hadoop作为Lucene子项目Nutch一部分正式引入Apache。

⑧2006年Map-Reduce和Nutch Distributed FileSystem纳入Hadoop项目,Hadoop正式诞生。

3.Hadoop发行版本

Apache(2006)、Cloudera(2008)、Hortonworks(2011)。

4.Hadoop优势

高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出现故障,也不会导致数据丢失。

高扩展性:在集群间分配任务数据,可方便的扩展数以千计的结点。可动态增加和删除服务器。

高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。可以实现集群工作。

高容错性:能够自动将失败的任务重新分配。就是在执行过程中,如果遇到任务无法执行,将会把这个失败的任务重新分配到其他服务器,这个被分配的服务器需要具有相关资源。

5.Hadoop1.x/2.x/3.x

Hadoop1.x组成:

  • MapReduce(计算+资源调度)

  • HDFS(数据存储)

  • Common(辅助工具)

Hadoop2.x组成:

  • MapReduce(计算)

  • Yarn(资源调度)

  • HDFS(数据存储)

  • Common(辅助工具)

Hadoop3.x组成:组成上和2.x相同,但是细节方面存在差异。

  • MapReduce(计算)

  • Yarn(资源调度)

  • HDFS(数据存储)

  • Common(辅助工具)

6.HDFS架构

Hadoop Distributed File System简称HDFS,是一个分布式文件系统。

①NameNode(nn):存储文件的元数据,如文件名、文件目录、文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。

②DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

③Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份

7.Yarn架构

Yet Anothor Resource Negotiator简称YARN,是一种资源协调者,是Hadoop的资源管理器。

①ResourceManage(rm):整个集群资源(内存、CPU等)的总负责。

②NodeManager(nm):单个节点服务器资源总和。

③ApplicationMaster(am):单个任务运行的总和。

④Container:容器,相当于一台独立服务器,里面封装了任务运行所需要的资源,比如内存、CPU、磁盘、网络等。一个Container可以运行1-8g内存。

Tips:客户端可以有多个;集群上可以运行多个ApplicationMaster;每个NodeManager可以有多个Container执行。

过程:client提交作业给ResourceManager,ResourceManager进行节点服务器分配,在ResourceManager中创建Container,在Container里面运行任务。

8.MapReduce架构

MapReduce将计算过程分为两个阶段:Map和Reduce。

  1. Map阶段并行处理输入数据

  2. Reduce阶段对Map结果进行汇总。

9.大数据技术生态体系

  1. 数据库(结构化数据)→Sqoop数据传递→HDFS文件传输→Yarn资源管理...

  2. 文件日志(半结构化数据)→Flume日志收集→HDFS文件传输→HBase非关系型数据库→Yarn资源管理...

  3. 视频、PPT等(非结构数据)→Kafka消息队列...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/338964.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

74.MySQL 分页原理与优化(下)

文章目录 前言一、一次分页查询的演进二、分页数据在不同页反复出现的坑 前言 上一篇文章介绍了分页原理与优化:73.MySQL 分页原理与优化(上) 但分页还有一个“坑”需要注意,本文细细道来,可能很多朋友都踩过这个坑还…

【大数据】流处理基础概念(一):Dataflow 编程基础、并行流处理

流处理基础概念(一):Dataflow 编程基础、并行流处理 1.Dataflow 编程基础1.1 Dataflow 图1.2 数据并行和任务并行1.3 数据交换策略 2.并行流处理2.1 延迟与吞吐2.1.1 延迟2.1.2 吞吐2.1.3 延迟与吞吐 2.2 数据流上的操作2.2.1 数据接入和数据…

圆的参数方程是如何推导的?

圆的参数方程是如何推导的? 1. 圆的三种参数表示2. 三角函数万能公式3. 回到圆的参数方程1. 圆的三种参数表示 已知圆的第一种参数方程为: x 2 + y 2 = r x^2+y^2=r x2+y2=r   圆的图像如下: 通过上图,不难理解,圆的参数方程还可以用三角函数表示,也就是第二种参数表…

Qt6入门教程 9:QWidget、QMainWindow和QDialog

目录 一.QWidget 1.窗口和控件 2.事件 二.QMainWindow 三.QDialog 1.模态对话框 1.1模态对话框 1.2.半模态对话框 2.非模态对话框 在用Qt Creator创建Qt Widgets项目时,会默认提供三种基类以供选择,它们分别是QWidget、QMainWIndow和QDialog&am…

<蓝桥杯软件赛>零基础备赛20周--第15周--快速幂+素数

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周。 在QQ群上交流答疑&am…

IntelliJ IDEA 常用快捷键一览表(通用型,提高编写速度,类结构、查找和查看源码,替换与关闭,调整格式)

文章目录 IntelliJ IDEA 常用快捷键一览表1-IDEA的日常快捷键第1组:通用型第2组:提高编写速度(上)第3组:提高编写速度(下)第4组:类结构、查找和查看源码第5组:查找、替换…

1 - 搭建Redis数据库服务器|LNP+Redis

搭建Redis数据库服务器|LNPRedis 搭建Redis数据库服务器相关概念Redis介绍安装RedisRedis服务常用管理命令命令set 、 mset 、 get 、 mget命令keys 、 type 、 exists 、 del命令ttl 、 expire 、 move 、 flushdb 、flushall 、save、shutdown 配置文件解析 LNP …

《WebKit 技术内幕》之七(4): 渲染基础

4 WebKit软件渲染技术 4.1 软件渲染过程 在很多情况下,也就是没有那些需要硬件加速内容的时候(包括但不限于CSS3 3D变形、CSS3 03D变换、WebGL和视频),WebKit可以使用软件渲染技术来完成页面的绘制工作(除非读者强行…

Unity学习-逐帧图集动画制作

首先在文件部分创建一个Sprite Library Asset 然后点击创建出来的文件 点下面的加号添加对应的图 添加完成之后点一下Apply 然后新建一个物体 添加这三个组件 其中SpriteLibrary里面 把你刚刚创建的图集文件拉过来 Sprite Resolver选择对应的动作和图片 然后开始制作动画 An…

如何用“VMware安装Ubuntu”win11系统?

一、 下载Ubuntu 企业开源和 Linux |Ubuntu的 二、 安装 三、 启动虚拟机 选中Try or Install Ubuntu Server,按回车

【QT+QGIS跨平台编译】之三:【OpenSSL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、OpenSSL介绍二、OpenSSL配置三、Window环境下配置四、Linux环境下配置五、Mac环境下配置 一、OpenSSL介绍 OpenSSL是一个开放源代码的软件库包,应用程序可以使用这个包来进行安全通信,避免窃听,同时确认另一端连接者的身份。这…

基于 Redis 实现高性能、低延迟的延时消息的方案演进

🎉欢迎来系统设计专栏:基于 Redis 实现高性能、低延迟的延时消息的方案演进 📜其他专栏:java面试 数据结构 源码解读 故障分析 🎬作者简介:大家好,我是小徐🥇☁️博客首页&#xff1…

HCIA vlan练习

目录 实验拓扑 实验要求 实验步骤 1、交换机创建vlan 2、交换机上的各个接口划分到对应vlan中 3、trunk干道 4、路由器单臂路由 5、路由器DHCP设置 实验测试 华为交换机更换端口连接模式报错处理 实验拓扑 实验要求 根据图划分vlan,并通过DHCP给主机下发…

Tomcat的maxParameterCountmaxPostSize参数

Tomcat的maxParameterCount&maxPostSize参数 Tomcat的maxParameterCount&maxPostSize参数1.问题1.1问题现象1.2 参数总结1.3 问题总结 2 Tomcat官网的解释2.1 到https://tomcat.apache.org/找到文档入口2.2 找到文档的Reference2.3 查看配置文件的参数 3 文档看不明白&…

上位机图像处理和嵌入式模块部署(开篇)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 图像处理是现实生活当中很实用的一门技术。工业上一般采用的是机器视觉,以传统算法和光源控制为主,部分采用了深度学习技术…

回溯算法理论基础

回溯算法介绍 回溯算法与递归函数相辅相成,它是一种纯暴力搜索,可以使用剪枝等方式进行优化 解决问题 组合问题切割问题子集问题排列问题棋盘问题 可视化理解 可以理解为一种 n 叉树型结构,树的最大宽度为遍历的元素数量,树的…

vivado JTAG链、连接、IP关联规则

JTAG链 这列出了定义板上可用的不同JTAG链。每个链都列在下面<jtag_chain>以及链的名称&#xff0c;以及定义名称和链中组件的位置&#xff1a; <jtag_chains> <jtag_chain name"chain1"> <position name"0" component"part0…

MySQL不同插入方式性能对比实验

最近负责的项目需要数据同步入库MySQL&#xff0c;为了测速那种入库方式效率比较高&#xff0c;为此进行了以下的对比实验&#xff0c;在此记录一下 实验表单数据格式 实验代码 共三种方法对比 mutiSqlInsert: 一条一条插入&#xff0c;最后一次提交 singleSqlInsert&…

黑马苍穹外卖Day10学习

文章目录 Spring Task介绍cron表达式入门案例 订单状态定时处理需求分析代码开发功能测试 WebSocket介绍入门案例 来单提醒需求分析代码开发 客户催单需求分析代码开发 Spring Task 介绍 cron表达式 入门案例 订单状态定时处理 需求分析 代码开发 新建一个task包里面编写代码…

像 Google SRE 一样 OnCall

在 Google SRE 的著作《Google运维解密》(原作名&#xff1a;Site Reliability Engineering: How Google Runs Production Systems)中&#xff0c;Google SRE 的关键成员们几乎不惜用了三个章节的篇幅描述了在 Google 他们是如何 OnCall 的。 Google SRE 实践中&#xff0c;有…