AI 的未来是开源的

想象一下,在未来,人工智能不会被锁在公司的金库里,而是由全球创新者社区一砖一瓦地在开放中构建的。协作,而不是竞争,推动进步,道德考虑与原始绩效同等重要。这不是科幻小说,而是人工智能发展核心正在酝酿的开源革命。但大型科技公司有自己的议程,将受限制的模型掩盖为开源,同时试图从真正开放的社区中获益。让我们剥开代码层,揭开这些努力背后的真相。这场对开源人工智能未来的探索将剖析人工智能开发中的“伪装者”,并捍卫“真正的伪装者”,以揭示开源软件在这一切之下嗡嗡作响的创新引擎。最重要的是,开源人工智能将产生一个开源数据堆栈。

需求

Matteo Wong最近在《大西洋月刊》(The Atlantic)上发表的一篇文章《从来没有’开放’人工智能》(There There was so a Thing as ‘Open’ AI“)描述了学术界和软件界对真正开源人工智能的日益增长的趋势。“我们的想法是创建相对透明的模型,让公众可以更轻松、更便宜地使用、研究和复制,试图使高度集中的技术民主化,这种技术可能有可能改变工作、警察、休闲甚至宗教。《大西洋月刊》表明,像 Meta 这样的大型科技公司正试图通过“公开清洗”他们的产品来满足市场的这一需求。他们承担了开源社区的品质和良好的声誉,而没有真正开源他们的产品。但是,真实的东西是无可替代的。这是因为真正的开源软件推动了创新和协作:这是负责任地推进人工智能所迫切需要的两种品质。

伪装者

LLaMA 2 是由 Meta 创建的大型语言模型,可免费用于研究和商业用途。导致一些人认为 LLaMA 2 是开源的。但是,Meta 对其模型的使用实施了一些严格的限制。例如,LLaMA 2 不能用于改进任何其他大型语言模型。这一立场与开放软件的传统私人集体创新模式背道而驰,这种模式促进了自由和开放的创新揭示,以造福软件社区中的每个人。

Meta 不允许将 LLaMA 2 与每月拥有 7 亿用户的产品集成,并且不允许透露他们的模型是根据哪些数据进行训练的,或者他们用来构建模型的代码,从而进一步削弱了其模型的使用。通过不披露,Meta 正在向固有偏见和意外歧视的问题敞开大门。根据歧视性数据训练的模型将提供歧视性反应。如果整个软件社区无法查看用于构建模型的代码,以查看是否内置了任何保护措施,或者用于训练模型的数据,那么我们在这些道德问题上就一无所知。在已发表的人工智能研究更关注性能而不是正义和尊重的时代,这种混淆尤其令人不安。

真正的开源AI

Mistral AI 因其开源大型语言模型而获得认可,尤其是 Mistral 7B 和 Mixtral 8x7B。该公司努力确保其 AI 模型的广泛可访问性,鼓励开放软件社区进行审查、修改和重用。

vLLM 代表“矢量化低延迟模型服务”,是一个专门用于加速和优化大型语言模型的开源库 (LLMs)。它是一个强大的工具,可以显着提高 LLMs的性能和可用性。这使得它成为从事各种人工智能应用程序的开发人员的宝贵资产,从聊天机器人和虚拟助手到内容创建和代码生成。因此,Mistral 建议使用 vLLM 作为 7B 和 8x7B 模型的推理服务器。

EleutherAI 是一个非营利性 AI 研究实验室,已从用于讨论 GPT-3 的 Discord 服务器发展成为领先的非营利性研究组织。该小组以其在自然语言处理领域培训和推广开放科学规范的工作而闻名。他们发布了各种开源大型语言模型,并参与了与人工智能对齐和可解释性相关的研究项目。他们的 LM-Harness 项目可能是领先的语言模型开源评估工具。

Phi-2是Microsoft的,它的重量超过了LLM它的重量。这个小而强大的模型在合成文本和过滤网站的混合体上进行了训练,在问答、总结和翻译等任务方面表现出色。真正让 Phi-2 与众不同的是它专注于推理和语言理解,即使没有先进的对齐技术,也能带来令人印象深刻的性能。它在偏见和毒性领域大放异彩,显示出危害较小的人工智能交互的潜力。️

许多称职的开源嵌入模型正在加强整个开源生成式 AI 空间。这些是当前最先进的开源技术,包括 UAE-Large-V1 和多语言-e5-largel。

在这个不断发展的领域中,还有更多。这个有限的列表只是一个开始。

开源推动创新

真正参与开源软件开发的公司秉承极端开放创新的理念,通过承认并非所有好的代码或伟大的想法都存在于他们的组织中,来挑战传统的竞争优势概念。这种转变支持了这样一种观点,即开源生态系统中的共享创新会导致更快的市场增长,甚至为研发资金有限的小型软件公司提供从开源软件中存在的研发溢出效应中受益的机会。这是因为,与传统的外包相比,开放式创新通过利用社区的集体智慧来增强内部资源,而不会减少内部研发工作。这意味着,开源软件公司不必牺牲他们的预算来追求组织之外的思想领导力和代码。此外,开源软件公司通过尽早和经常发布代码来战略性地推动创新,认识到软件社区中创新过程的累积性。总而言之,许多人已经认识到:开源软件推动创新。

开放式促进协作

通过在开源软件社区中建立联系,企业家能够实现短期和长期目标。短期利润目标建立公司,长期利润目标维持公司。同时,这种网络努力使网络本身永久化 - 为下一个企业家发展它。众所周知,开源平台提供对源代码的访问,使开发人员能够创建升级、插件和其他软件,并根据他们的要求使用它们。随着更广泛的软件社区广泛采用 Kubernetes,这种特殊的协作经历了繁荣。现在,现代技术比以往任何时候都更能协同工作,摩擦非常小,几乎可以在几分钟内完成。

大型科技公司在自由发布他们创建的框架、库和语言来维护和开发内部工具时,承认了开源社区固有的这种深度合作。这样做可以加深能够开发其产品的开发人员库,并开始为类似技术的运行方式设定标准。《大西洋月刊》的同一篇文章援引Meta创始人马克·扎克伯格(Mark Zuckerberg)的话说,“对我们来说,提供这种服务非常有价值,因为现在整个行业所有最好的开发人员都在使用我们在内部使用的工具”。

开源产生开源

这些都是为什么我们经常看到开源公司之间的协同效应的因素。开源 AI 和 ML 公司自然会使用其他开源产品开发解决方案,从对象存储等基础产品到堆栈再到可视化工具。当一家开源公司向前迈进时,我们都会这样做。这种有凝聚力的混合方法可能是我们开发采用以人为本方法的人工智能的最佳选择。这些市场固有的自然力量,对开源人工智能的需求,加上开源软件的创新和协作品质,将推动人工智能数据堆栈开源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/338593.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode---380周赛

题目列表 3005. 最大频率元素计数 3006. 找出数组中的美丽下标 I 3007. 价值和小于等于 K 的最大数字 3008. 找出数组中的美丽下标 II 一、最大频率元素计数 这题就是个简单的计数题,正常遍历统计数据即可,关键是你要会写代码逻辑。 代码如下&…

代码随想录二刷 | 二叉树 | 把二叉搜索树转换为累加树

代码随想录二刷 | 二叉树 | 把二叉搜索树转换为累加树 题目描述解题思路递归法迭代法 代码实现递归法迭代法 题目描述 538.把二叉搜索树转换为累加树 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树&…

【C++干货铺】C++11新特性——右值引用、移动构造、完美转发

个人主页点击直达:小白不是程序媛 C系列专栏:C干货铺 代码仓库:Gitee 目录 左值与左值引用 右值与右值引用 左值引用和右值引用的比较 左值引用总结: 右值引用总结: 左值引用的作用和意义 右值引用的使用场景和…

C# Socket通信从入门到精通(17)——单个异步UDP服务器监听一个客户端C#代码实现

前言: 我们在开发UDP通信程序时,除了开发UDP同步客户端程序,有时候我们也需要开发异步UDP服务器程序,所谓的异步最常见的应用就是服务器接收客户端数据以后,程序不会卡在数据接收这里,而是可以继续往下执行,这在实际项目中是经常会遇到的,所以说掌握异步UDP服务器程序…

蓝桥杯省赛无忧 编程9

#include<bits/stdc.h> using namespace std; int main() {int n,k,ans0;cin>>n>>k;while(n--){int a;cin>>a;ansa&1;}if(ans&1) cout<<"Alice"<<\n;else cout<<"Bob"; return 0; }这个游戏是基于数…

Windows主机Navicat远程连接到Ubuntu18.04虚拟机MySQL

1. 在虚拟机上安装MySQL sudo apt-get install mysql-server sudo apt-get install libmysqlclient-dev 2. 检查安装 sudo netstat -tap | grep mysql 3. 查看默认密码 sudo cat /etc/mysql/debian.cnf 4. 用查看到的密码登录MySQL server&#xff0c;修改root用户的密码 …

OpenHarmonyOS-gn与Ninja

GN语法及在鸿蒙的使用 [gnninja学习 0x01]gn和ninja是什么 ohos_sdk/doc/subsys-build-gn-coding-style-and-best-practice.md GN 语言与操作 一、gn简介 gn是generate ninja的缩写&#xff0c;它是一个元编译系统&#xff08;meta-build system&#xff09;,是ninja的前端&am…

系统架构设计师教程(十三)层次式架构设计理论与实践

层次式架构设计理论与实践 13.1 层次式体系结构概述13.2 表现层框架设计13.2.1 表现层设计模式13.2.2 使用XML设计表现层&#xff0c;统一Web Form与Windows Form的外观13.2.3表现层中UIP设计思想13.2.4 表现层动态生成设计思想 13.3 中间层架构设计13.3.1 业务逻辑层组件设计1…

C++ | 五、哈希表 Hash Table(数组、集合、映射)、迭代器

哈希表基础 哈希表是一类数据结构&#xff08;哈希表包含数组、集合和映射&#xff0c;和前两篇文章叙述的字符串、链表平级&#xff09;哈希表概念&#xff1a;类似于Python里的字典类型&#xff0c;哈希表把关键码key值通过哈希函数来和哈希表上的索引对应起来&#xff0c;之…

对testfire.net进行信息收集,采用googlehacking语法,fofa等包括子端口号、子域名,备案信息,所属资产等等

采用被动的信息收集对testfire.net进行信息收集。 使用命令查询真实IP地址: nslookup testfire.net 使用googlehacking语法: 使用子域名查询网站查询一下子域名&#xff1a; 利用fofa查询一些信息&#xff1a; 利用whois 查找备案信息等&#xff1a; 尝试绕过千锋官网的cdn 利…

国考省考行测:选词填空,逻辑填空,语境分析,语意辨析,刷题,

国考省考行测&#xff1a;选词填空&#xff0c;逻辑填空&#xff0c;语境分析 2022找工作是学历、能力和运气的超强结合体! 公务员特招重点就是专业技能&#xff0c;附带行测和申论&#xff0c;而常规国考省考最重要的还是申论和行测&#xff0c;所以大家认真准备吧&#xff0…

【博士每天一篇论文-技术综述】Machine Learning With Echo State Networks 一篇系统讲解ESN知识的五星文章

阅读时间&#xff1a;2023-11-21 1 介绍 年份&#xff1a;2020 作者&#xff1a;徐元超&#xff0c;曼尼托巴大学 期刊&#xff1a; 无 引用量&#xff1a;无 这篇文章是一篇技术报告&#xff0c;从递归神经网络&#xff08;RNNs&#xff09;引入到回声状态网络&#xff08;…

基于DRIVE数据集的视网膜UNet分割

1 数据集介绍 这是一个非常小的数据集&#xff0c;非常适合用于视觉分割任务练手。数据集的文件夹如图所示&#xff1a; 图1-1文件夹结构 test中存放的是测试图片&#xff0c;training中存放的是20张用于训练的图片。imges文件夹中存放的是20张原始图片&#xff0c;mask中存放…

Leetcode的AC指南 —— 栈与队列:232.用栈实现队列

摘要&#xff1a; **Leetcode的AC指南 —— 栈与队列&#xff1a;232.用栈实现队列 **。题目介绍&#xff1a;请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作&#xff08;push、pop、peek、empty&#xff09;&#xff1a; 实现 MyQueue 类&#xff1a;…

解决 pnpm : 无法加载文件 C:\Program Files\nodejs\pnpm.ps1,因为在此系统上禁止运行脚本。

执行下面命令进行安装pnpm安装后 npm install -g pnpm 然后执行pnpm 报错 解决办法&#xff1a; 以管理员身份运行 Windows PowerShell &#xff0c; 在命令行输入以下命令后按回车&#xff0c; set-ExecutionPolicy RemoteSigned 再输入Y 回车即可。 再回到控制台输入p…

工作小记 cv-cuda使用

最近要实现RGB相关cuda算子的功能&#xff0c;最终通过自己手写核函数实现。这里记录一下对cv-cuda的调研和使用&#xff0c;因为项目要求gcc-5&#xff0c;而cv-cuda要求gcc11而放弃使用&#xff0c;但是相关的记录&#xff0c;以及使用方法都要记录下来&#xff0c;以便下次项…

在MD编辑器里插入20次方问题

前言 看了很多文章里面没写怎么插入20次方&#xff0c;最后在官网的一篇文章上看到了很详细的数学公式的插入。 问题 大家肯定以为这样就可以了 效果 明显是不行的 解决 使用{}把数字括起来就可以了。 1 20 1^{20} 120 小知识 在行内显示(就是与文字在一起) $ $另起…

《A++ 敏捷开发》- 5 量化管理从个人开始

我&#xff1a;你们管理层和客户都比较关心项目的进度&#xff0c;项目是否能按时完成&#xff1f;请问你们过去的项目如何&#xff1f; 开发&#xff1a;我们现在就是走敏捷开发&#xff0c;两周一个迭代。每次迭代前&#xff0c;我们聚一起开会&#xff0c;把所有用户故事按优…

互联网加竞赛 基于机器视觉的手势检测和识别算法

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的手势检测与识别算法 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng…

(超详细)9-YOLOV5改进-添加EffectiveSEModule注意力机制

1、在yolov5/models下面新建一个EffectiveSEModule.py文件&#xff0c;在里面放入下面的代码 代码如下&#xff1a; import torch from torch import nn as nn from timm.models.layers.create_act import create_act_layerclass EffectiveSEModule(nn.Module):def __init__…