Hive-SQL语法大全

Hive SQL 语法大全

基于语法描述说明

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] 'path';
SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC]
(A | B | C)

如上语法,在语法描述中出现:

  • [],表示可选,如上[LOCATION] 表示可写、可不写

  • |,表示或,如上ASC | DESC,表示二选一

  • …,表示序列,即未完结,如上SELECT expr, ... 表示在SELECT后可以跟多个expr(查询表达式),以逗号隔开

  • (),表示必填,如上(A | B | C)表示此处必填,填入内容在A、B、C中三选一

数据库操作

创建数据库

CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION 'path'] [COMMENT database_comment];
  • IF NOT EXISTS,如存在同名数据库不执行任何操作,否则执行创建数据库操作

  • [LOCATION],自定义数据库存储位置,如不填写,默认数据库在HDFS的路径为:/user/hive/warehouse

  • [COMMENT database_comment],可选,数据库注释

删除数据库

DROP DATABASE [IF EXISTS] db_name [CASCADE];
  • [IF EXISTS],可选,如果存在此数据库执行删除,不存在不执行任何操作
  • [CASCADE],可选,级联删除,即数据库内存在表,使用CASCADE可以强制删除数据库

数据库修改LOCATION

ALTER DATABASE database_name SET LOCATION hdfs_path;

不会在HDFS对数据库所在目录进行改名,只是修改location后,新创建的表在新的路径,旧的不变

选择数据库

USE db_name;
  • 选择数据库后,后续SQL操作基于当前选择的库执行
  • 如不使用use,默认在default库执行

若想切换回使用default库

USE DEFAULT;

查询当前USE的数据库

SELECT current_database();

表操作

数据类型

分类类型描述字面量示例
原始类型BOOLEANtrue/falseTRUE
TINYINT1字节的有符号整数 -128~1271Y
SMALLINT2个字节的有符号整数,-32768~327671S
INT4个字节的带符号整数1
BIGINT8字节带符号整数1L
FLOAT4字节单精度浮点数1.0
DOUBLE8字节双精度浮点数1.0
DEICIMAL任意精度的带符号小数1.0
STRING字符串,变长“a”,’b’
VARCHAR变长字符串“a”,’b’
CHAR固定长度字符串“a”,’b’
BINARY字节数组
TIMESTAMP时间戳,毫秒值精度122327493795
DATE日期‘2016-03-29’
时间频率间隔
复杂类型ARRAY有序的的同类型的集合array(1,2)
MAPkey-value,key必须为原始类型,value可以任意类型map(‘a’,1,’b’,2)
STRUCT字段集合,类型可以不同struct(‘1’,1,1.0), named_stract(‘col1’,’1’,’col2’,1,’clo3’,1.0)
UNION在有限取值范围内的一个值create_union(1,’a’,63)

基础建表

CREATE [EXTERNAL] TABLE tb_name
	(col_name col_type [COMMENT col_comment], ......)
	[COMMENT tb_comment]
	[PARTITIONED BY(col_name, col_type, ......)]
	[CLUSTERED BY(col_name, col_type, ......) INTO num BUCKETS]
	[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']
	[LOCATION 'path']
  • [EXTERNAL],外部表,必须搭配

  • [ROW FORMAT DELIMITED FIELDS TERMINATED BY '']指定列分隔符

  • [LOCATION 'path']表数据路径

  • 外部表示意

    CREATE EXTERNAL TABLE test_ext(id int) COMMENT 'external table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LOCATION 'hdfs://node1:8020/tmp/test_ext';
    

(1)外部表中的表和数据是相互独立的,将表删除(删除元数据),数据还保留在Hive中;将数据删除,表仍然存在。
请添加图片描述

(2) 删除内部表,则元数据和数据都被删除。
请添加图片描述

  • [desc formatted tablename]查看表类型

  • [COMMENT tb_comment]表注释,可选

  • [PARTITIONED BY(col_name, col_type, ......)]基于列分区

    -- 分区表示意
    CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    
  • [CLUSTERED BY(col_name, col_type, ......)]基于列分桶

    CREATE TABLE course (c_id string,c_name string,t_id string) CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
    

基于其它表的结构建表

CREATE TABLE tbl_name LIKE other_tbl;

基于查询结果建表

CREATE TABLE tbl_name AS SELECT ...;

删除表

DROP TABLE tbl;

修改表

重命名

ALTER TABLE old RENAME TO new;

修改属性:内部表和外部表的转换

ALTER TABLE tbl SET TBLPROPERTIES(key=value);
-- 常用属性
("EXTERNAL"="TRUE") -- 内外部表,TRUE表示外部表,内转外
('comment' = new_comment) -- 修改表注释
-- 其余属性参见
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties

分区操作

创建分区表

-- 分区表示意
CREATE TABLE test_ext(id int) COMMENT 'partitioned table' PARTITION BY(year string, month string, day string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

添加分区

ALTER TABLE tablename ADD PARTITION (partition_key='partition_value', ......);

修改分区值

ALTER TABLE tablename PARTITION (partition_key='old_partition_value') RENAME TO PARTITION (partition_key='new_partition_value');

注意

只会在元数据中修改,不会同步修改HDFS路径吗,如:

  • 原分区路径为:/user/hive/warehouse/test.db/test_table/month=201910,分区名:month='201910'
  • 将分区名修改为:201911后,分区所在路径不变,依旧是:/user/hive/warehouse/test.db/test_table/month=201910

如果希望修改分区名后,同步修改HDFS的路径,并保证正常可用,需要:

  • 在元数据库中:找到SDS表 -> 找到LOCATION列 -> 找到对应分区的路径记录进行修改
    • 如将记录的:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911
  • 在HDFS中,同步修改文件夹名
    • 如将文件夹:/user/hive/warehouse/test.db/test_table/month=201910 修改为:/user/hive/warehouse/test.db/test_table/month=201911

删除分区

ALTER TABLE tablename DROP PARTITION (partition_key='partition_value');

删除分区后,只是在元数据中删除,即删除元数据库中:

  • PARTITION
  • SDS

相关记录

分区所在的HDFS文件夹依旧保留

加载数据

LOAD DATA:从本地 or Hdfs

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl PARTITION(partition_key='partition_value');
-- 注意,基于HDFS进行load加载数据,源数据文件会消失
--(本质是被移动到表所在的目录中)

INSERT SELECT:从其他表中加载数据

INSERT (OVERWRITE | INTO) TABLE tbl PARTITION(partition_key='partition_value') SELECT ... FROM ...;

分桶操作

建表

CREATE TABLE course (c_id string,c_name string,t_id string) 
	[PARTITION(partition_key='partition_value')] 
	CLUSTERED BY(c_id) INTO 3 BUCKETS ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
  • CLUSTERED BY(col) 指定分桶列
  • INTO 3 BUCKETS,设定3个桶

分桶表需要开启:

set hive.enforce.bucketing=true;

设置自动匹配桶数量的reduces task数量

数据加载

INSERT (OVERWRITE | INTO) TABLE tbl 
	[PARTITION(partition_key='partition_value')] 
	SELECT ... FROM ... CLUSTER BY(col);

分桶表无法使用LOAD DATA进行数据加载

数据加载

LOAD DATA

将数据文件加载到表

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE tbl [PARTITION(partition_key='partition_value')];	-- 指定分区可选

INSERT SELECT

将其它表数据,加载到目标表

INSERT (OVERWRITE | INTO) TABLE tbl 
	[PARTITION(partition_key='partition_value')] 		-- 指定分区,可选
	SELECT ... FROM ... [CLUSTER BY(col)];				-- 指定分桶列,可选

数据导出

INSERT OVERWRITE SELECT

INSERT OVERWRITE [LOCAL] DIRECTORY ‘path’ 				-- LOCAL可选,带LOCAL导出Linux本地,不带LOCAL导出到HDFS
	[ROW FORMAT DELIMITED FIELDS TERMINATED BY '']		-- 可选,自定义列分隔符
	SELECT ... FROM ...;
-- 将表中的数据导出到其他任意目录,例如linux本地磁盘,例如hdfs,例如mysql等等

bin/hive

  • bin/hive -e 'sql' > export_filesql结果重定向到导出文件中
  • bin/hive -f 'sql_script_file' > export_filesql脚本执行的结果重定向到导出文件中

复杂类型

类型定义示例内含元素类型元素个数取元素可用函数
arrayarray<类型>如定义为array数据为:1,2,3,4,5单值,类型取决于定义动态,不限制array[数字序号] 序号从0开始size统计元素个数 array_contains判断是否包含指定数据
mapmap<key类型, value类型>如定义为:map<string, int>数据为:{’a’: 1, ‘b’: 2, ‘c’: 3}键值对,K-V,K和V类型取决于定义动态,不限制map[key] 取出对应key的valuesize统计元素个数array_contains判断是否包含指定数据 map_keys取出全部key,返回array map_values取出全部values,返回array
structstruct<子列名 类型, 子列名 类型…>如定义为:struct<c1 string, c2 int, c3 date>数据为:’a’, 1, ‘2000-01-01’单值,类型取决于定义固定,取决于定义的子列数量struct.子列名 通过子列名取出子列值暂无

数据查询的课堂SQL记录

基本查询

create database itheima;
use itheima;
CREATE TABLE itheima.orders (
    orderId bigint COMMENT '订单id',
    orderNo string COMMENT '订单编号',
    shopId bigint COMMENT '门店id',
    userId bigint COMMENT '用户id',
    orderStatus tinyint COMMENT '订单状态 -3:用户拒收 -2:未付款的订单 -1:用户取消 0:待发货 1:配送中 2:用户确认收货',
    goodsMoney double COMMENT '商品金额',
    deliverMoney double COMMENT '运费',
    totalMoney double COMMENT '订单金额(包括运费)',
    realTotalMoney double COMMENT '实际订单金额(折扣后金额)',
    payType tinyint COMMENT '支付方式,0:未知;1:支付宝,2:微信;3、现金;4、其他',
    isPay tinyint COMMENT '是否支付 0:未支付 1:已支付',
    userName string COMMENT '收件人姓名',
    userAddress string COMMENT '收件人地址',
    userPhone string COMMENT '收件人电话',
    createTime timestamp COMMENT '下单时间',
    payTime timestamp COMMENT '支付时间',
    totalPayFee int COMMENT '总支付金额'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

load data local inpath '/home/hadoop/itheima_orders.txt' into table itheima.orders;

CREATE TABLE itheima.users (
    userId int,
    loginName string,
    loginSecret int,
    loginPwd string,
    userSex tinyint,
    userName string,
    trueName string,
    brithday date,
    userPhoto string,
    userQQ string,
    userPhone string,
    userScore int,
    userTotalScore int,
    userFrom tinyint,
    userMoney double,
    lockMoney double,
    createTime timestamp,
    payPwd string,
    rechargeMoney double
) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

load data local inpath '/home/hadoop/itheima_users.txt' into table itheima.users;

-- 查询全表数据
SELECT * FROM itheima.orders;

-- 查询单列信息
SELECT orderid, userid, totalmoney FROM itheima.orders o ;

-- 查询表有多少条数据
SELECT COUNT(*) FROM itheima.orders;

-- 过滤广东省的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%';

-- 找出广东省单笔营业额最大的订单
SELECT * FROM itheima.orders WHERE useraddress LIKE '%广东%'
ORDER BY totalmoney DESC LIMIT 1;

-- 统计未支付、已支付各自的人数
SELECT ispay, COUNT(*) FROM itheima.orders o GROUP BY ispay ;

-- 在已付款的订单中,统计每个用户最高的一笔消费金额
SELECT userid, MAX(totalmoney) FROM itheima.orders WHERE ispay = 1 GROUP BY userid;
-- 统计每个用户的平均订单消费额
SELECT userid, AVG(totalmoney) FROM itheima.orders GROUP BY userid;
-- 统计每个用户的平均订单消费额,并过滤大于10000的数据
SELECT userid, AVG(totalmoney) AS avg_money FROM itheima.orders GROUP BY userid HAVING avg_money > 10000;

-- 订单表和用户表JOIN 找出用户username
SELECT o.orderid, o.userid, u.username FROM itheima.orders o JOIN itheima.users u ON o.userid = u.userid;
SELECT o.orderid, o.userid, u.username FROM itheima.orders o LEFT JOIN itheima.users u ON o.userid = u.userid;

RLIKE

image-20230224234706719

image-20230224234719463

image-20230224234733895

-- 查找广东省数据
SELECT * FROM itheima.orders WHERE useraddress RLIKE '.*广东.*';
-- 查找用户地址是:xx省 xx市 xx区
SELECT * FROM itheima.orders WHERE useraddress RLIKE '..省 ..市 ..区';
-- 查找用户姓为:张、王、邓
SELECT * FROM itheima.orders WHERE username RLIKE '[张王邓]\\S+';
-- 查找手机号符合:188****0*** 规则
SELECT * FROM itheima.orders WHERE userphone RLIKE '188\\S{4}0[0-9]{3}';

UNION联合

CREATE TABLE itheima.course(
c_id string, 
c_name string, 
t_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

LOAD DATA LOCAL INPATH '/home/hadoop/course.txt' INTO TABLE itheima.course;
-- 基础UNION
SELECT * FROM itheima.course WHERE t_id = '周杰轮'
	UNION
SELECT * FROM itheima.course WHERE t_id = '王力鸿';
-- 去重演示
SELECT * FROM itheima.course
	UNION
SELECT * FROM itheima.course;
-- 不去重
SELECT * FROM itheima.course
	UNION ALL
SELECT * FROM itheima.course;
-- UNION写在FROM中 UNION写在子查询中
SELECT t_id, COUNT(*) FROM 
(
	SELECT * FROM itheima.course WHERE t_id = '周杰轮'
		UNION ALL
	SELECT * FROM itheima.course WHERE t_id = '王力鸿' 
) AS u GROUP BY t_id;

-- 用于INSERT SELECT
INSERT OVERWRITE TABLE itheima.course2
SELECT * FROM itheima.course 
	UNION
SELECT * FROM itheima.course;

Sampling采样

# 随机桶抽取, 分配桶是有规则的
# 可以按照列的hash取模分桶
# 按照完全随机分桶
-- 其它条件不变的话,每一次运行结果一致
select username, orderId, totalmoney FROM itheima.orders 
	tablesample(bucket 3 out of 10 on username);
	
-- 完全随机,每一次运行结果不同
select * from itheima.orders 
	tablesample(bucket 3 out of 10 on rand());
	


# 数据块抽取,按顺序抽取,每次条件不变,抽取结果不变
-- 抽取100条
select * from itheima.orders
	tablesample(100 rows);
	
-- 取1%数据
select * from itheima.orders
	tablesample(1 percent);
	
-- 取 1KB数据
select * from itheima.orders
	tablesample(1K);

虚拟列

虚拟列是Hive内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive目前可用3个虚拟列:

- INPUT__FILE__NAME,显示数据行所在的具体文件
- BLOCK__OFFSET__INSIDE__FILE,显示数据行所在文件的偏移量
- ROW__OFFSET__INSIDE__BLOCK,显示数据所在HDFS块的偏移量
  此虚拟列需要设置:SET hive.exec.rowoffset=true 才可使用
SET hive.exec.rowoffset=true;

SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders;

SELECT *, BLOCK__OFFSET__INSIDE__FILE FROM itheima.orders WHERE BLOCK__OFFSET__INSIDE__FILE < 1000;

SELECT orderid, username, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM itheima.orders_bucket;

SELECT INPUT__FILE__NAME, COUNT(*) FROM itheima.orders_bucket GROUP BY INPUT__FILE__NAME;

函数

数值、集合、转换、日期函数

-- 查看所有可用函数
show functions;
-- 查看函数使用方式
describe function extended count;
-- 数值函数
-- round 取整,设置小数精度
select round(3.1415926);		-- 取整(四舍五入)
select round(3.1415926, 4);		-- 设置小数精度4位(四舍五入)
-- 随机数
select rand();					-- 完全随机
select rand(3);					-- 设置随机数种子,设置种子后每次运行结果一致的
-- 绝对值
select abs(-3);
-- 求PI
select pi();

-- 集合函数
-- 求元素个数
select size(work_locations) from test_array;
select size(members) from test_map;
-- 取出map的全部key
select map_keys(members) from test_map;
-- 取出map的全部value
select map_values(members) from test_map;
-- 查询array内是否包含指定元素,是就返回True
select * from test_array where ARRAY_CONTAINS(work_locations, 'tianjin');
-- 排序
select *, sort_array(work_locations) from test_array;


-- 类型转换函数
-- 转二进制
select binary('hadoop');
-- 自由转换,类型转换失败报错或返回NULL
select cast('1' as bigint);

-- 日期函数
-- 当前时间戳
select current_timestamp();
-- 当前日期
select current_date();
-- 时间戳转日期
select to_date(current_timestamp());
-- 年月日季度等
select year('2020-01-11');
select month('2020-01-11');
select day('2020-01-11');
select quarter('2020-05-11');
select dayofmonth('2020-05-11');
select hour('2020-05-11 10:36:59');
select minute('2020-05-11 10:36:59');
select second('2020-05-11 10:36:59');
select weekofyear('2020-05-11 10:36:59');
-- 日期之间的天数
select datediff('2022-12-31', '2019-12-31');
-- 日期相加、相减
select date_add('2022-12-31', 5);
select date_sub('2022-12-31', 5);

社交案例操作SQL

准备数据

-- 创建数据库
create database db_msg;
-- 选择数据库
use db_msg;

-- 如果表已存在就删除
drop table if exists db_msg.tb_msg_source ;
-- 建表
create table db_msg.tb_msg_source(
    msg_time string comment "消息发送时间",
    sender_name string comment "发送人昵称",
    sender_account string comment "发送人账号",
    sender_sex string comment "发送人性别",
    sender_ip string comment "发送人ip地址",
    sender_os string comment "发送人操作系统",
    sender_phonetype string comment "发送人手机型号",
    sender_network string comment "发送人网络类型",
    sender_gps string comment "发送人的GPS定位",
    receiver_name string comment "接收人昵称",
    receiver_ip string comment "接收人IP",
    receiver_account string comment "接收人账号",
    receiver_os string comment "接收人操作系统",
    receiver_phonetype string comment "接收人手机型号",
    receiver_network string comment "接收人网络类型",
    receiver_gps string comment "接收人的GPS定位",
    receiver_sex string comment "接收人性别",
    msg_type string comment "消息类型",
    distance string comment "双方距离",
    message string comment "消息内容"
);

-- 上传数据到HDFS(Linux命令)
hadoop fs -mkdir -p /chatdemo/data
hadoop fs -put chat_data-30W.csv /chatdemo/data/

-- 加载数据到表中,基于HDFS加载
load data inpath '/chatdemo/data/chat_data-30W.csv' into table tb_msg_source;

-- 验证数据加载
select * from tb_msg_source tablesample(100 rows);
-- 验证一下表的数量
select count(*) from tb_msg_source;

ETL清洗转换

create table db_msg.tb_msg_etl(
    msg_time string comment "消息发送时间",
    sender_name string comment "发送人昵称",
    sender_account string comment "发送人账号",
    sender_sex string comment "发送人性别",
    sender_ip string comment "发送人ip地址",
    sender_os string comment "发送人操作系统",
    sender_phonetype string comment "发送人手机型号",
    sender_network string comment "发送人网络类型",
    sender_gps string comment "发送人的GPS定位",
    receiver_name string comment "接收人昵称",
    receiver_ip string comment "接收人IP",
    receiver_account string comment "接收人账号",
    receiver_os string comment "接收人操作系统",
    receiver_phonetype string comment "接收人手机型号",
    receiver_network string comment "接收人网络类型",
    receiver_gps string comment "接收人的GPS定位",
    receiver_sex string comment "接收人性别",
    msg_type string comment "消息类型",
    distance string comment "双方距离",
    message string comment "消息内容",
    msg_day string comment "消息日",
    msg_hour string comment "消息小时",
    sender_lng double comment "经度",
    sender_lat double comment "纬度"
);

INSERT OVERWRITE TABLE db_msg.tb_msg_etl
SELECT 
	*, 
	DATE(msg_time) AS msg_day, 
	HOUR(msg_time) AS msg_hour, 
	SPLIT(sender_gps, ',')[0] AS sender_lng, 
	SPLIT(sender_gps, ',')[1] AS sender_lat
FROM db_msg.tb_msg_source
WHERE LENGTH(sender_gps) > 0;

指标计算

需求1

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_total_msg_cnt 
COMMENT "每日消息总量" AS 
SELECT 
    msg_day, 
    COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY msg_day;

需求2

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_hour_msg_cnt 
COMMENT "每小时消息量趋势" AS  
SELECT  
    msg_hour, 
    COUNT(*) AS total_msg_cnt, 
    COUNT(DISTINCT sender_account) AS sender_user_cnt, 
    COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl GROUP BY msg_hour;

需求3

CREATE TABLE IF NOT EXISTS tb_rs_loc_cnt
COMMENT '今日各地区发送消息总量' AS 
SELECT 
    msg_day,  
    sender_lng, 
    sender_lat, 
    COUNT(*) AS total_msg_cnt 
FROM db_msg.tb_msg_etl
GROUP BY msg_day, sender_lng, sender_lat;

需求4

--保存结果表
CREATE TABLE IF NOT EXISTS tb_rs_user_cnt
COMMENT "今日发送消息人数、接受消息人数" AS
SELECT 
msg_day, 
COUNT(DISTINCT sender_account) AS sender_user_cnt, 
COUNT(DISTINCT receiver_account) AS receiver_user_cnt
FROM db_msg.tb_msg_etl
GROUP BY msg_day;

需求5

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_s_user_top10
COMMENT "发送消息条数最多的Top10用户" AS
SELECT 
    sender_name AS username, 
    COUNT(*) AS sender_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_name 
ORDER BY sender_msg_cnt DESC 
LIMIT 10;

需求6

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_r_user_top10
COMMENT "接收消息条数最多的Top10用户" AS
SELECT 
receiver_name AS username, 
COUNT(*) AS receiver_msg_cnt 
FROM db_msg.tb_msg_etl 
GROUP BY receiver_name 
ORDER BY receiver_msg_cnt DESC 
LIMIT 10;

需求7

CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_phone
COMMENT "发送人的手机型号分布" AS
SELECT 
    sender_phonetype, 
    COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_phonetype;

需求8

--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECT
    sender_os, 
    COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;

1).修改字段注释字符集

alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集

alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示

alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解

mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

COUNT(sender_account) AS cnt
FROM db_msg.tb_msg_etl
GROUP BY sender_phonetype;








需求8

```sql
--保存结果表
CREATE TABLE IF NOT EXISTS db_msg.tb_rs_sender_os
COMMENT "发送人的OS分布" AS
SELECT
    sender_os, 
    COUNT(sender_account) AS cnt 
FROM db_msg.tb_msg_etl 
GROUP BY sender_os

Hive列注释、表注释等乱码解决方案

-- 在Hive的MySQL元数据库中执行
use hive;

1).修改字段注释字符集

alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
2).修改表注释字符集

alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
3).修改分区表参数,以支持分区键能够用中文表示

alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
4).修改索引注解

mysql>alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/337815.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3-模版引用

模版引用 ref 属性 场景&#xff1a;需要直接访问底层 DOM 元素。 方法&#xff1a;使用特殊的 ref 属性。 <input ref"input">ref 属性 允许我们在一个特定的 DOM 元素或子组件实例被挂载后&#xff0c;获得对它的直接引用。 访问模板引用 小 Demo: 当 i…

游戏渲染管道

高级的渲染步骤是由管道&#xff08;软件架构&#xff09;实现&#xff0c;各个阶段会操作输入流中的数据项&#xff0c;并对输出流产生数据。 管道每个阶段独立于其他阶段&#xff0c;所以管道的最大有点在于非常适合并行化。 渲染管道分为3个概要阶段。但在这里多讲几个阶段…

【大数据分析与挖掘技术】Mahout聚类算法

目录 一、聚类的基本概念 二、常见的Mahout数据结构 &#xff08;一&#xff09;向量&#xff08;Vector&#xff09; &#xff08;二&#xff09;文本文档 三、聚类算法种类 &#xff08;一&#xff09;K-means &#xff08;二&#xff09;模糊K-means &#xff08;…

中国电子学会2022年6月份青少年软件编程Scratch图形化等级考试试卷一级真题

一、单选题(共25题&#xff0c;共50分) 1.广场中有声控喷泉&#xff0c;当声音的音量大于60的时候&#xff0c;喷泉就会喷出水&#xff0c;现在的音量为30&#xff0c;下列哪个选项可以让喷泉喷出水&#xff1f;&#xff08;2分&#xff09; A. B. C. D. 答案解析&#x…

搭建开源数据库中间件MyCat2-配置mysql数据库双主双从

mycat2官网&#xff1a;MyCat2 前言&#xff1a;mycat2下载地址无法访问&#xff0c;不知道是不是被DNS污染了&#xff0c;还是需要搭梯子访问&#xff0c;所以我只能找到1.21的版本进行安装。搭建mycat2的前提是搭建数据库主从复制。 架构&#xff1a;双主双从 配置&#xf…

基于OpenSSL的SSL/TLS加密套件全解析

概述 SSL/TLS握手时&#xff0c;客户端与服务端协商加密套件是很重要的一个步骤&#xff0c;协商出加密套件后才能继续完成后续的握手和加密通信。而现在SSL/TLS协议通信的实现&#xff0c;基本都是通过OpenSSL开源库&#xff0c;本文章就主要介绍下加密套件的含义以及如何在O…

通信入门系列——连续卷积定理、循环卷积、离散卷积定理

本节目录 一、连续卷积定理 1、时域卷积定理 2、频域卷积定理 二、循环卷积 三、离散卷积定理本节内容 一、连续卷积定理 卷积定理在信号分析中占有重要的地位&#xff0c;包括时域卷积定理和频域卷积定理。在信号分析领域&#xff0c;通常采用基于卷积定理的时频域分析&#…

vectorCast——CBA功能实现代码手动覆盖

选择被测文件&#xff0c;点击右键&#xff0c;选择add coverage analysis.选择添加覆盖分析后&#xff0c;会自动打开CBA。此时就可以在代码里选择没有覆盖的代码&#xff0c;勾选后填写未覆盖分析并保存&#xff0c;就可以实现代码覆盖了。查看覆盖率报告。 手动覆盖代码完成…

结构体内存对齐(面试重点)

结构体内存对齐 1. 结构体类型的声明1.1 结构体的概念1.1.1 结构的声明1.1.2 结构体变量的创建和初始化 1.2 结构的特殊声明1.3 结构的自引用 2. 结构体内存对齐2.1 对齐规则2.1.1 练习1:2.1.2 练习2:2.1.3 练习3:2.1.4 练习4: 2.2 offsetof宏的使用2.3 为什么存在内存对齐?2.…

Vue2的双向数据绑定

Vue2的双向数据绑定 Observer&#xff1a;观察者&#xff0c;这里的主要工作是递归地监听对象上的所有属性&#xff0c;在属性值改变的时候&#xff0c;触发相应的watcher。 Watcher&#xff1a;订阅者&#xff0c;当监听的数据值修改时&#xff0c;执行响应的回调函数&#x…

基于Springboot的民宿在线预定平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的民宿在线预定平台(有报告)。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring…

通过完善价值观评价,建立企业多维度评价体系

一、背景A公司是一家互联网公司&#xff0c;主要负责技术开发、软件应用方面的工作&#xff0c;致力于长期的软件研发、服务器开发、游戏端开发等&#xff0c;依托于专业技术实力和长期的实践积累&#xff0c;公司不断整合各类资源、深入开发技术&#xff0c;规模不断扩大&…

详解Redisson

第1章&#xff1a;Redisson简介 大家好&#xff0c;我是小黑&#xff0c;咱们今天来聊聊Redisson&#xff0c;Redisson不只是简单地对Redis进行了封装&#xff0c;它还提供了一系列高级的分布式Java数据结构&#xff0c;像是分布式锁、原子长整型这种。 首先&#xff0c;Redi…

02_Collection

文章目录 集合Java的集合类 Collectioniterator方法 集合 在Java中&#xff0c;指的就是存放数据的容器&#xff0c;是一个载体&#xff0c;可以一次容纳多个对象。 解决Bug的两种方法&#xff1a; 打印 System.out.println();log.info(); debug 检查数据 Java的集合类 Co…

项目管理十大知识领域之项目干系人管理

一、项目干系人管理的概念解析 项目干系人管理是指在项目执行过程中&#xff0c;对项目相关方的需求进行识别、分析和管理的过程。项目干系人管理的核心在于有效地沟通、协调和满足各方的需求&#xff0c;以确保项目能够顺利实施并达到预期的成果。在现代项目管理实践中&#…

conda国内加速

1、配置国内源 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 2、显示源地址 conda config --set show_channel_urls yes

Python实现GEE嵌套协方差结构仿真模型(GEE算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 广义估计方程&#xff08;Generalized Estimating Equations, GEE&#xff09;是一种用于分析具有重复…

CC工具箱使用指南:【按条件选择排序】

一、简介 此工具来自一个群友的需求&#xff0c;做完想想可能会有同样需求的人用得到&#xff0c;就稍改了一下做成公共版本。 具体需求是这样的&#xff1a; 1、按条件选择对部分图斑进行排序&#xff0c;比如说在所有地类中&#xff0c;只想对地类名称为【林地】的图斑进行…

【Elasticsearch】索引恢复(recovery)流程梳理之副本分片数据恢复

replica shard重启具体流程 replica shard node &#xff08;generic threadpool&#xff09; 也是因为应用新的集群状态触发recovery&#xff0c;进入index阶段进入translog 阶段。先尝试重放本地的translog到global checkpoint向primary shard发起start recovery的请求&…

C++参悟:正则表达式库regex

正则表达式库regex 一、概述二、快速上手Demo1. 查找字符串2. 匹配字符串3. 替换字符串 三、类关系梳理1. 主类1. basic_regex 2. 算法1. regex_match2. regex_search3. regex_replace 3. 迭代器4. 异常5. 特征6. 常量1. syntax_option_type2. match_flag_type3. error_type 一…