【机器学习】调配师:咖啡的完美预测

有一天,小明带着一脸期待找到了你这位数据分析大师。他掏出手机,屏幕上展示着一份详尽的Excel表格。“看,这是我咖啡店过去一年的数据。”他滑动着屏幕,“每个月的销售量、广告投入,还有当月的气温,我都记录下来了。我总觉得这之间有关联,但我就是说不清楚。你能帮我找出其中的奥秘吗?”
在这里插入图片描述

你微微一笑,接过手机扫了一眼数据。“没问题,小明。这些数据就像咖啡店的DNA,隐藏着它的生命密码。而我们要做的,就是用线性回归这把钥匙,去解锁这些密码。”

你打了个响指,仿佛已经胸有成竹。“想象一下,这个线性回归模型就像一个智能咖啡师。它会根据过去的经验,也就是这些数据,来学习如何冲泡出一杯完美的‘预测销售额’。就像咖啡师会根据咖啡豆的种类、研磨的粗细、水温的高低来调整冲泡方法一样,我们的模型也会根据销售量、广告投入和气温来调整它的‘冲泡配方’,从而给出最准确的预测。”
在这里插入图片描述

小明的眼睛亮了起来,仿佛看到了新的希望。“那太棒了!这样一来,我就能提前知道哪些月份生意会火爆,哪些月份需要加大广告投入,还能提前规划好库存,避免浪费。”

你点了点头,表示赞同。“没错,这就是数据分析的魅力所在。它不仅能告诉你过去发生了什么,还能帮你预测未来会发生什么。这样一来,你就能做出更明智的决策,让你的咖啡店更上一层楼。”

说完,你迫不及待地打开电脑,准备开始构建这个神奇的线性回归模型。你知道,一旦模型构建成功,在这里插入图片描述
小明和他的咖啡店将迎来一个全新的时代。
在这里插入图片描述

在接下来的时间里,你和小明一起投身于数据的海洋中。你们清洗数据、构建特征、训练模型,每一步都充满了挑战和乐趣。

实际应用机器学习源代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 小明的咖啡店在过去一年里收集了详细的运营数据,包括每月的销售量(Sales)、广告投入(Advertising)、平均气温(Temperature)以及对应的月度销售额(Monthly_Revenue)
data = pd.read_csv('coffee_shop_data.csv', header=0)

# 分离出影响销售额的特征变量和目标变量
X = data[['Sales', 'Advertising', 'Temperature']]  # 输入特征:销售量、广告投入、平均气温
y = data['Monthly_Revenue']  # 目标变量:月销售额

# 按照80%训练集与20%测试集的比例划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用线性回归模型对咖啡店的销售额进行预测训练
revenue_predictor = LinearRegression()
revenue_predictor.fit(X_train, y_train)

# 训练好的模型用于预测测试集上的销售额
predictions = revenue_predictor.predict(X_test)

# 评估模型性能,计算均方误差(MSE)
mse = mean_squared_error(y_test, predictions)
print(f"模型在测试集上的均方误差(MSE)是: {mse:.2f}")

# 输出模型参数,了解各特征对销售额的影响程度
print(f"Coefficients (销售量、广告投入、平均气温对月销售额的影响系数): {revenue_predictor.coef_}")
print(f"Intercept (截距,即当所有特征值为0时的预测销售额): {revenue_predictor.intercept_}")

# 假设下个月预计有1500杯的销售量、500元的广告投入,以及20℃的平均气温
next_month_conditions = np.array([[1500, 500, 20]])
predicted_revenue_next_month = revenue_predictor.predict(next_month_conditions)
print(f"根据模型预测,下个月的预期销售额为: {round(predicted_revenue_next_month[0],3)}元")

# 可视化分析 - 广告投入与实际月销售额的关系图
plt.figure(figsize=(10, 6))
plt.scatter(data['Advertising'], data['Monthly_Revenue'], color='blue', label='实际数据点')
plt.plot(data['Advertising'], revenue_predictor.predict(data[['Sales', 'Advertising', 'Temperature']]), color='red',
         label='拟合直线')
plt.xlabel('广告投入')
plt.ylabel('月销售额')
plt.title('广告投入与月销售额关系')
plt.legend()
plt.show()

# 可视化分析 - 测试集中真实月销售额与预测月销售额的对比图
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_test, color='blue', label='实际测试数据点')
plt.scatter(y_test, predictions, color='red', label='预测数据点')
plt.xlabel('实际月销售额')
plt.ylabel('预测月销售额')
plt.title('实际与预测月销售额对比(测试集)')
plt.legend()
plt.show()

# 注:在处理特征前,请确保已对不同尺度的特征进行了适当的预处理,如归一化或标准化,以提高模型的准确性。

完成这样预测的好处如下:

前瞻性决策:通过预测未来收入,咖啡店经理小明可以根据预测结果提前做出决策,比如调整库存、安排员工排班、制定营销策略等,以更好地适应预期的销售情况。

资源优化:根据预测收入,可以合理分配和控制成本。例如,在预测销售额较低时减少不必要的广告投入,或在预测销售额较高时增加原料储备,避免断货影响生意。

风险管理:预测有助于识别潜在的风险和机会。如果预测结果显示接下来的月收入可能下滑,小明就可以及时采取措施预防损失;反之,若预测收入增长,他则可抓住机遇进一步扩大市场。

绩效评估:实际收入与预测收入的对比分析可以帮助评估现有策略的效果,并据此改进业务模型。

计划与预算:基于预测数据,小明能够更准确地制定经营计划和财务预算,从而提高整体运营效率和盈利能力。
最终,当那个智能咖啡师——线性回归模型终于冲泡出第一杯“预测销售额”时,你们相视一笑,知道所有的付出都是值得的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/337210.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++提高编程(二)】

一、STL初识 1.1、STL的诞生 长久以来,软件界一直希望建立一种可重复利用的东西 C的面向对象和泛型编程思想,目的就是复用性的提升 大多情况下,数据结构和算法都未能有一套标准,导致被迫从事大量重复工作 为了建立数据结构和算法的一套标…

如何自学Python:一份详细的指南

📝个人主页:五敷有你 🔥系列专栏:有感而谈⛺️稳中求进,晒太阳 引言 Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能而受到许多程序员的喜爱。无论是数据分析、网络开发&#…

【教程】React-Native代码规范与加固详解

引言 React Native 是一种跨平台的移动应用开发框架,由 Facebook 推出。它可以让我们使用 JavaScript 和 React 语法编写原生应用,大大提高了移动应用的开发效率。但是,对于开发人员来说,代码规范和安全性也是非常重要的问题。本…

C++ memmove 学习

memmove&#xff0c;将num字节的值从源指向的位置复制到目标指向的内存块。 允许目标和源有重叠。 当目标区域与源区域没有重叠则和memcpy函数功能相同。 宽字符版本是wmemmove&#xff0c;安全版本加_s&#xff1b; #include "stdafx.h" #include<iostream&g…

Eureka使用详解

介绍主要特点主要功能与常用服务注册中心的比较Eureka与Zookeeper的区别和联系Eureka与Nacos的区别与联系Eureka与Consul的区别与联系 安装部署Eureka与CAP理论Eureka实现实时上下线Eureka常用注解Eureka架构模式 介绍 Eureka是一个基于REST的服务&#xff0c;主要用于AWS云中…

rem布局

1.0 rem基础 1.1 em单位(了解) 结论1&#xff1a;1em默认字体大小是16像素 结论2: em这个单位会默认参考父元素字体大小为基准 <head><style>/* 结论1: 1em默认字体大小是16像素结论2: em这个单位会默认参考父元素字体大小为基准*//* html {如果根元素默认字体…

面试2024.1.20

简单介绍下你做的项目。 这个神领物流项目是一个前后端分离的项目&#xff0c;前段他有3个客户端&#xff08;用户端为微信小程序、司机端和快递员端为app&#xff09;一个管理端&#xff08;pc&#xff09;&#xff0c;后端用的技术栈用的是SpringAlibabaCloud、数据库用的是M…

ABC337 A-G

Toyota Programming Contest 2024#1&#xff08;AtCoder Beginner Contest 337&#xff09; - AtCoder 手速五题之后看FG&#xff0c;一看榜G过的比F多...两题都有思路然后先开写了F像是大模拟写了一堆bug&#xff0c;赛后对拍调bug调完疯狂re&#xff0c;发现是对数组双倍操作…

Django开发_14_后台管理及分页器

一、后台管理 &#xff08;一&#xff09;登录 http://127.0.0.1:8000/admin/ &#xff08;二&#xff09;创建超级用户 manage.py createsuperuser &#xff08;三&#xff09;注册模型 admin.py&#xff1a; models [model1&#xff0c;model2&#xff0c;model3 ]ad…

VScode新增设备实现无感接入(不需要输入密码)

VScode远程开发接入设备&#xff0c;默认是需要输入密码的&#xff0c;但是日常开发中刷新就需要重新输入密码&#xff0c;很烦人。配置ssh的RSA密钥后会&#xff0c;就可以直接系统级别验证接入&#xff0c;对开发人员来说验证步骤就透明了&#xff0c;实现无感接入&#xff0…

Object.prototype.toString.call个人理解

文章目录 这段代码的常见用处参考文献&#xff1a; 拆分理解1、Object.prototype.toString小问题参考文献&#xff1a; 2、call函数的作用参考文献 3、继续深入一些&#xff08;这部分内容是个人理解&#xff0c;没有明确文献支撑&#xff09; 这段代码的常见用处 Object.prot…

力扣645.错误的集合

一点一点地刷&#xff0c;慢慢攻克力扣&#xff01;&#xff01; 王子公主请看题 集合 s 包含从 1 到 n 的整数。不幸的是&#xff0c;因为数据错误&#xff0c;导致集合里面某一个数字复制了成了集合里面的另外一个数字的值&#xff0c;导致集合 丢失了一个数字 并且 有一个数…

el-upload中的before-upload不生效

我们先来看看官方对before-upload的定义 before-upload是在上传文件时触发&#xff0c;不是添加文件时触发&#xff0c;添加文件时触发 on-change。 所以如果我们要在添加文件时&#xff0c;对文件的大小和后缀等等进行判断&#xff0c;可以用 on-change 方法来实现。 checkSu…

​WordPress顶部管理工具栏怎么添加一二级自定义菜单?

默认情况下&#xff0c;WordPress前端和后台页面顶部都有一个“管理工具栏”&#xff0c;左侧一般就是站点名称、评论、新建&#xff0c;右侧就是您好&#xff0c;用户名称和头像。那么我们是否可以在这个管理工具栏中添加一些一二级自定义菜单呢&#xff1f; 其实&#xff0c…

史上最全EasyExcel

一、EasyExcel介绍 1、数据导入&#xff1a;减轻录入工作量 2、数据导出&#xff1a;统计信息归档 3、数据传输&#xff1a;异构系统之间数据传输 二、EasyExcel特点 Java领域解析、生成Excel比较有名的框架有Apache poi、jxl等。但他们都存在一个严重的问题就是非常的耗内…

64位ATT汇编语言as汇编ld链接,执行报错Segmentation fault

absCallAndPrintAbsAsLd.s里边的内容如下&#xff1a; .section .datastringToShow:.ascii "The abs of number is %d\n\0" .global _start .section .text _start:pushq %rbpmovq %rsp,%rbpmovq $-5,%rdicall absmovq $stringToShow,%rdimovq %rax,%rsicall printf…

EasyRecovery2024电脑数据恢复工具好不好用?

Ontrack是我们综述中的第一个产品&#xff0c;由于该软件的功效和广度&#xff0c;我认为它完全基于业务。有一个具有基本功能的免费版本和一系列付费版本&#xff0c;不仅可以恢复文件&#xff08;免费版和家庭版&#xff09;&#xff0c;还可以创建磁盘映像/从 CD 和 DVD 恢复…

集美大学“第15届蓝桥杯大赛(软件类)“校内选拔赛 H卯酉东海道

dijk spfa思想 然后你需要存一下每个点 * l种颜色&#xff0c;你开个数组存一下 st[i][j] 为到达i点且到达以后是j颜色的最小距离是否已经确定了 #include<bits/stdc.h> using namespace std; using ll long long; const int N 3e510; struct Edge{ll to,col,w;bool …

竞赛保研 机器视觉opencv答题卡识别系统

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 答题卡识别系统 - opencv python 图像识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分…

Chatopera 云服务支持大语言模型对话(LLM),定制您的聊天机器人

2024 年&#xff0c;Chatopera 云服务继续不断完善&#xff0c;为开发者提供最好的定制聊天机器人的工具。在过去的一年&#xff0c;用户们反映最多的建议是 Chatopera 云服务内置大语言模型的对话&#xff0c;今天 Chatopera 云服务完成了产品升级&#xff0c;满足了这个诉求。…