2024美赛数学建模思路 - 案例:感知机原理剖析及实现

文章目录

  • 1 感知机的直观理解
    • 2 感知机的数学角度
    • 3 代码实现
  • 4 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 感知机的直观理解

感知机应该属于机器学习算法中最简单的一种算法,其原理可以看下图:

在这里插入图片描述

比如说我们有一个坐标轴(图中的黑色线),横的为x1轴,竖的x2轴。图中的每一个点都是由(x1,x2)决定的。如果我们将这张图应用在判断零件是否合格上,x1表示零件长度,x2表示零件质量,坐标轴表示零件的均值长度和均值重量,并且蓝色的为合格产品,黄色为劣质产品,需要剔除。那么很显然如果零件的长度和重量都大于均值,说明这个零件是合格的。也就是在第一象限的所有蓝色点。反之如果两项都小于均值,就是劣质的,比如在第三象限的黄色点。

在预测上很简单,拿到一个新的零件,我们测出它的长度x1,质量x2,如果两项都大于均值,说明零件合格。这就是我们人的人工智能。

那么程序怎么知道长度重量都大于均值的零件就是合格的呢?
或者说

它是怎么学会这个规则的呢?
程序拿到手的是当前图里所有点的信息以及标签,也就是说它知道所有样本x的坐标为(x1, x2),同时它属于蓝色或黄色。对于目前手里的这些点,要是能找到一条直线把它们分开就好了,这样我拿到一个新的零件,知道了它的质量和重量,我就可以判断它在线的哪一侧,就可以知道它可能属于好的或坏的零件了。例如图里的黄、蓝、粉三条线,都可以完美地把当前的两种情况划分开。甚至x1坐标轴或x2坐标轴都能成为一个划分直线(这两个直线均能把所有点正确地分开)。

读者也看到了,对于图中的两堆点,我们有无数条直线可以将其划分开,事实上我们不光要能划分当前的点,当新来的点进来是,也要能很好地将其划分,所以哪条线最好呢?

怎样一条直线属于最佳的划分直线?实际上感知机无法找到一条最佳的直线,它找到的可能是图中所有画出来的线,只要能把所有的点都分开就好了。

得出结论:
如果一条直线能够不分错一个点,那就是一条好的直线
进一步来说:

如果我们把所有分错的点和直线的距离求和,让这段求和的举例最小(最好是0,这样就表示没有分错的点了),这条直线就是我们要找的。

2 感知机的数学角度

首先我们确定一下终极目标:甭管找最佳划分直线啥中间乱七八糟的步骤,反正最后生成一个函数f(x),当我们把新的一个数据x扔进函数以后,它会预测告诉我这是蓝的还是黄的,多简单啊。所以我们不要去考虑中间过程,先把结果定了。

在这里插入图片描述

瞧,f(x)不是出来了嘛,sign是啥?wx+b是啥?别着急,我们再看一下sigin函数是什么。

在这里插入图片描述

sign好像很简单,当x大于等于0,sign输出1,否则输出-1。那么往前递归一下,wx+b如果大于等于0,f(x)就等于1,反之f(x)等于-1。

那么wx+b是啥?
它就是那条最优的直线。我们把这个公式放在二维情况下看,二维中的直线是这样定义的:y=ax+b。在二维中,w就是a,b还是b。所以wx+b是一条直线(比如说本文最开始那张图中的蓝线)。如果新的点x在蓝线左侧,那么wx+b<0,再经过sign,最后f输出-1,如果在右侧,输出1。等等,好像有点说不通,把情况等价到二维平面中,y=ax+b,只要点在x轴上方,甭管点在线的左侧右侧,最后结果都是大于0啊,这个值得正负跟线有啥关系?emmm….其实wx+b和ax+b表现直线的形式一样,但是又稍有差别。我们把最前头的图逆时针旋转45度,蓝线是不是变成x轴了?哈哈这样是不是原先蓝线的右侧变成了x轴的上方了?其实感知机在计算wx+b这条线的时候,已经在暗地里进行了转换,使得用于划分的直线变成x轴,左右侧分别为x轴的上方和下方,也就成了正和负。

那么,为啥是wx+b,而不叫ax+b?
在本文中使用零件作为例子,上文使用了长度和重量(x1,x2)来表示一个零件的属性,所以一个二维平面就足够,那么如果零件的品质和色泽也有关系呢?那就得加一个x3表示色泽,样本的属性就变成了(x1,x2,x3),变成三维了。wx+b并不是只用于二维情况,在三维这种情况下,仍然可以使用这个公式。所以wx+b与ax+b只是在二维上近似一致,实际上是不同的东西。在三维中wx+b是啥?我们想象屋子里一个角落有蓝点,一个角落有黄点,还用一条直线的话,显然是不够的,需要一个平面!所以在三维中,wx+b是一个平面!至于为什么,后文会详细说明。四维呢?emmm…好像没法描述是个什么东西可以把四维空间分开,但是对于四维来说,应该会存在一个东西像一把刀一样把四维空间切成两半。能切成两半,应该是一个对于四维来说是个平面的东西,就像对于三维来说切割它的是一个二维的平面,二维来说是一个一维的平面。总之四维中wx+b可以表示为一个相对于四维来说是个平面的东西,然后把四维空间一切为二,我们给它取名叫超平面。由此引申,在高维空间中,wx+b是一个划分超平面,这也就是它正式的名字。

正式来说:
wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。

细节:

w是超平面的法向量:对于一个平面来说w就是这么定义的,是数学知识,可以谷歌补习一下

b是超平面的截距:可以按照二维中的ax+b理解

特征空间:也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空间中可以找到样本所有的属性组合

在这里插入图片描述
我们从最初的要求有个f(x),引申到能只输出1和-1的sign(x),再到现在的wx+b,看起来越来越简单了,只要能找到最合适的wx+b,就能完成感知机的搭建了。前文说过,让误分类的点距离和最大化来找这个超平面,首先我们要放出单独计算一个点与超平面之间距离的公式,这样才能将所有的点的距离公式求出来对不?

在这里插入图片描述

先看wx+b,在二维空间中,我们可以认为它是一条直线,同时因为做过转换,整张图旋转后wx+b是x轴,那么所有点到x轴的距离其实就是wx+b的值对不?当然了,考虑到x轴下方的点,得加上绝对值->|wx+b|,求所有误分类点的距离和,也就是求|wx+b|的总和,让它最小化。很简单啊,把w和b等比例缩小就好啦,比如说w改为0.5w,b改为0.5b,线还是那条线,但是值缩小两倍啦!你还不满意?我可以接着缩!缩到0去!所以啊,我们要加点约束,让整个式子除以w的模长。啥意思?就是w不管怎么样,要除以它的单位长度。如果我w和b等比例缩小,那||w||也会等比例缩小,值一动不动,很稳。没有除以模长之前,|wx+b|叫函数间隔,除模长之后叫几何间隔,几何间隔可以认为是物理意义上的实际长度,管你怎么放大缩小,你物理距离就那样,不可能改个数就变。在机器学习中求距离时,通常是使用几何间隔的,否则无法求出解。

在这里插入图片描述
对于误分类的数据,例如实际应该属于蓝色的点(线的右侧,y>0),但实际上预测出来是在左侧(wx+b<0),那就是分错了,结果是负,这时候再加个符号,结果就是正了,再除以w的模长,就是单个误分类的点到超平面的举例。举例总和就是所有误分类的点相加。

上图最后说不考虑除以模长,就变成了函数间隔,为什么可以这么做呢?不考虑wb等比例缩小这件事了吗?上文说的是错的吗?

有一种解释是这样说的:感知机是误分类驱动的算法,它的终极目标是没有误分类的点,如果没有误分类的点,总和距离就变成了0,w和b值怎样都没用。所以几何间隔和函数间隔在感知机的应用上没有差别,为了计算简单,使用函数间隔。

在这里插入图片描述
以上是损失函数的正式定义,在求得划分超平面的终极目标就是让损失函数最小化,如果是0的话就相当完美了。
在这里插入图片描述

感知机使用梯度下降方法求得w和b的最优解,从而得到划分超平面wx+b,关于梯度下降及其中的步长受篇幅所限可以自行谷歌。

3 代码实现

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    # 存放数据及标记的list
    dataArr = []; labelArr = []
    # 打开文件
    fr = open(fileName, 'r')
    # 将文件按行读取
    for line in fr.readlines():
        # 对每一行数据按切割福','进行切割,返回字段列表
        curLine = line.strip().split(',')
        # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
        if int(curLine[0]) >= 5:
            labelArr.append(1)
        else:
            labelArr.append(-1)
        #存放标记
        #[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
        #[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
        dataArr.append([int(num)/255 for num in curLine[1:]])
    #返回data和label
    return dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):
    '''
    感知器训练过程
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    #将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
    #转换后的数据中每一个样本的向量都是横向的
    dataMat = np.mat(dataArr)
    #将标签转换成矩阵,之后转置(.T为转置)。
    #转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
    #对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    #创建初始权重w,初始值全为0。
    #np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
    #样本长度保持一致
    w = np.zeros((1, np.shape(dataMat)[1]))
    #初始化偏置b为0
    b = 0
    #初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
    h = 0.0001
    #进行iter次迭代计算
    for k in range(iter):
        #对于每一个样本进行梯度下降
        #李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
        #进行一次梯度下降
        #在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
        #的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
        #两者的差异各有千秋,但较为常用的是随机梯度下降。
        for i in range(m):
            #获取当前样本的向量
            xi = dataMat[i]
            #获取当前样本所对应的标签
            yi = labelMat[i]
            #判断是否是误分类样本
            #误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
            #在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
            if -1 * yi * (w * xi.T + b) >= 0:
                #对于误分类样本,进行梯度下降,更新w和b
                w = w + h *  yi * xi
                b = b + h * yi
        #打印训练进度
        print('Round %d:%d training' % (k, iter))
    #返回训练完的w、b
    return w, b
def test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    #将数据集转换为矩阵形式方便运算
    dataMat = np.mat(dataArr)
    #将label转换为矩阵并转置,详细信息参考上文perceptron中
    #对于这部分的解说
    labelMat = np.mat(labelArr).T
    #获取测试数据集矩阵的大小
    m, n = np.shape(dataMat)
    #错误样本数计数
    errorCnt = 0
    #遍历所有测试样本
    for i in range(m):
        #获得单个样本向量
        xi = dataMat[i]
        #获得该样本标记
        yi = labelMat[i]
        #获得运算结果
        result = -1 * yi * (w * xi.T + b)
        #如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
        if result >= 0: errorCnt += 1
    #正确率 = 1 - (样本分类错误数 / 样本总数)
    accruRate = 1 - (errorCnt / m)
    #返回正确率
    return accruRate
if __name__ == '__main__':
    #获取当前时间
    #在文末同样获取当前时间,两时间差即为程序运行时间
    start = time.time()
    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')
    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = test(testData, testLabel, w, b)
    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/337122.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Broadcom交换芯片56620架构

文章目录 架构1.系统逻辑视图2.逻辑芯片视图3.芯片框图4.MIIM&#xff08;Medium Independent Interface Management&#xff09;5.交换结构6.CAP 架构 1.系统逻辑视图 Ingress Chip作用&#xff1a; 解析报文128字节的头部&#xff08;MMU&#xff08;Memory Management Uni…

微信小程序(九)轮播图

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.轮播容器的基本属性 2.轮播图片的尺寸处理 index.wxml <view class"navs"><text class"active">精选</text><text>手机</text><text>食品</text><…

uniapp组件库SwipeAction 滑动操作 使用方法

目录 #平台差异说明 #基本使用 #修改按钮样式 #点击事件 #API #Props #Event 该组件一般用于左滑唤出操作菜单的场景&#xff0c;用的最多的是左滑删除操作。 注意 如果把该组件通过v-for用于左滑删除的列表&#xff0c;请保证循环的:key是一个唯一值&#xff0c;可以…

【白话机器学习的数学】读书笔记(3)学习分类(感知机、逻辑回归)

三、学习分类 目录 三、学习分类1.分类的目的2.感知机1定义2判别函数3权重向量的更新表达式4感知机的缺点 3.逻辑回归1 Sigmoid函数2 决策边界 4.似然函数&#xff08;解决逻辑回归中参数更新表达式问题&#xff09;1.对数似然函数2.似然函数的微分1.改写成复合函数求微分2.计算…

线性代数的学习和整理23:用EXCEL,VBA,python计算向量/矩阵的各种乘法:内积,点积,外积,叉积(建设ing)

目录 前言&#xff1a;EXCEL里的的向量相关计算公式 0.1 EXCEL里相关公式 0.2 先说结论&#xff1a;向量组的点乘公式和 向量组的点乘公式不一样 1 向量的点乘 (内积) 1.1 向量的点乘公式 1.2 EXCEL里向量点乘的计算 ​编辑 1.3 向量点乘的性质 1.3.1 内积的公式…

71.工作中redis的常用场景总结

文章目录 一、简介二、统计访问次数三、缓存四、分布式锁五、限流六、排行榜七、作为Session的存储器&#xff0c;存用户登录状态八、位统计九、生成全局ID 一、简介 Redis作为一种优秀的基于key/value的缓存&#xff0c;有非常不错的性能和稳定性&#xff0c;无论是在工作中&…

mysql从库重新搭建的流程

背景 生产环境上的主从集群&#xff0c;因为一些异常原因&#xff0c;导致主从同步失败。现记录下通过重做mysql从库的方式来解决&#xff0c;重做过程不影响主库。 步骤 1、在主库上的操作步骤 备份主库所有数据&#xff0c;并将dump.sql文件拷贝到从库/tmp目录 mysqldump …

【JS逆向】某居深圳登陆信息加密逆向分析探索!

某二手房深圳站点的登陆信息加密逆向分析探索&#xff0c;需要分析查找关键的加密位置&#xff0c;位置在前上部分&#xff0c;需要理解一点代码&#xff0c;往上寻找一段代码&#xff0c;加密特征比较明显&#xff0c;找到后即可调试出来&#xff01; 网址&#xff1a; aHR0cH…

电子学会C/C++编程等级考试2023年12月(八级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:生理周期 人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,人会在相应的方面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集…

激光无人机打击系统——光束控制和指向系统

激光无人机&#xff08;UAV&#xff09;打击系统中的光束控制和指向系统通常包括以下几个关键组件和技术&#xff1a; 激光发射器&#xff1a;这是系统的核心&#xff0c;负责生成高能量的激光束。常用的激光类型包括固体激光器、化学激光器、光纤激光器等&#xff0c;选择取决…

基于JavaWeb+SSM+Vue智能社区服务小程序系统的设计和实现

基于JavaWebSSMVue智能社区服务小程序系统的设计和实现 滑到文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 滑到文末获取源码 Lun文目录 目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相…

高性能跨平台网络通信框架 HP-Socket v5.9.5

项目主页 : http://www.oschina.net/p/hp-socket开发文档 : https://www.docin.com/p-4478351216.html下载地址 : https://github.com/ldcsaa/HP-SocketQQ Group: 44636872, 663903943 v5.9.5 更新 一、主要更新 问题修复&#xff1a;由于 v5.9.4 版本升级了 KCP 导致 UDP AR…

【网络安全】-入门版

secure 一、基本工具1、metasploit framework ps.本着兴趣爱好&#xff0c;加强电脑的安全防护能力&#xff0c;并严格遵守法律和道德规范。一、基本工具 1、metasploit framework msf&#xff08;metasploit framework&#xff09;是一个开源的渗透测试框架&#xff0c;用于…

Node.JS CreateWriteStream(大容量写入文件流优化)

Why I Need Node.JS Stream 如果你的程序收到以下错误&#xff0c;或者需要大容量写入很多内容(几十几百MB甚至GB级别)&#xff0c;则必须使用Stream文件流甚至更高级的技术。 Error: EMFILE, too many open files 业务场景&#xff0c;我们有一个IntradayMissingRecord的补…

软件测试|使用matplotlib绘制箱型图

简介 绘制箱型图&#xff08;Box Plot&#xff09;是一种常用于可视化数据分布的方法&#xff0c;它可以显示数据的中位数、四分位数、异常值等统计信息。Matplotlib 是一个强大的 Python 数据可视化库&#xff0c;可以轻松绘制箱型图。在本文中&#xff0c;我们将介绍如何使用…

Java学习笔记(七)——操作数组工具类Arrays

文章目录 ArraysArrays.toString()Arrays.binarySearch()Arrays.copyOf()Arrays.copyOfRange()Arrays.fill()Arrays.sort()升序排序降序排序 Arrays 操作数组的工具类。 Arrays.toString() import java.util.Arrays;public class test40 {public static void main(String[] a…

instance_spawn_groups

字段介绍 此表通过 Boss 状态管理副本内的刷新组一旦满足任何 FLAG_ACTIVATE_SPAWN 条件&#xff0c;将激活预设的刷新组&#xff0c;任何 FLAG_BLOCK_SPAWN 条件将不激活刷新组 instance_spawn_groups instanceMapId 副本地图 IDbossStateId Boss 状态 ID&#xff0c;取值参…

在 EggJS 中实现 Redis 上锁

配置环境 下载 Redis Windows 访问 https://github.com/microsoftarchive/redis/releases 选择版本进行下载 - 勾选 [配置到环境变量] - 无脑下一步并安装 命令行执行&#xff1a;redis-cli -v 查看已安装的 Redis 版本&#xff0c;能成功查看就表示安装成功啦~ Mac brew i…

读元宇宙改变一切笔记11_区块链

1. 区块链 1.1. 由一个去中心化的“验证者”网络所管理的数据库 1.2. 一些观察者认为区块链是在结构上实现元宇宙的必要条件&#xff0c;而其他人则认为这种说法是荒谬的 1.3. 与集中式数据库不同&#xff0c;区块链记录不存储在单个位置&#xff0c;也不由单方管理 1.3.1.…

MySQL---多表查询综合练习

创建dept表 CREATE TABLE dept ( deptno INT(2) NOT NULL COMMENT 部门编号, dname VARCHAR (15) COMMENT 部门名称, loc VARCHAR (20) COMMENT 地理位置 ); 添加dept表主键 mysql> alter table dept add primary key(deptno); Query OK, 0 rows affected (0.02 s…