LSTM时间序列预测

本文借鉴了数学建模清风老师的课件与思路,可以点击查看链接查看清风老师视频讲解:【1】演示:基于LSTM深度学习网络预测时间序列(MATLAB工具箱)_哔哩哔哩_bilibili

% Forecast of time series based on LSTM deep learning network 
% (supporting multiple time series)
% 基于LSTM深度学习网络对时间序列进行预测(支持多元时间序列)

% Requires:  Windows computers and  MATLAB version 2021a or later!
% Deep Learning Toolbox is also needed.
% Unzip the code before running it and don't forget to change current folder.
% 要求:Windows电脑和MATLAB 2021a版本或更高版本!
% 还需要深度学习工具箱 Deep Learning Toolbox
% 运行代码前要解压压缩包,不要忘记更改当前文件夹


P_LSTM_Main_Function


% The language of the interface can be switched in the bottom 
% right corner of the toolbox, supporting Chinese and English.
% 工具箱右下角可以切换界面的语言,支持中文和英文。

一、导入数据

时间序列不需要时间(包括一元时间序列和多元时间序列),若有时间则可以将时间删去,同时数据里允许有缺失值。

若存在缺失值,则会提供三种方法来解决,一般来说是用三次样条插值。可根据插值后的图像来决定用哪种方法,如果发现样条插值后的图像差异较大,可考虑使用前两种方法,如下图:

若是指标较多,可以使用堆叠折线图。

二、两种预测模式

选择不同的模式得到的结果不一样,如下图:

说白了就是先对模型进行调参,然后将得到的最优参数带入进行训练。调参就是第二种模式,将数据集划分成训练集和测试集,测试集包含的样本数是多少,就有多少样本拿来被测试,然后就可以得到准确度。

三、设计LSTM网络

这里直接将鼠标移到对应的数值上,即可知道对应参数的意思。

通常来说LSTM层一层就够了,如果预测的效果不好再加大。

可以将生成的网络图(使用deepNetworkDesigner查看网络)放在论文中,该图比较精美。

四、Adam优化算法的参数设置

将这里的介绍修改后放入自己的论文。文中的伪代码,模型优缺点一样。

五、开始训练

 在训练的时候,考虑到训练的时间可能较久,若迭代曲线趋于平稳,则差不多可以停止训练了。

 训练完成:

六、汇报最终结果

6.1 调参过程中的的汇报

有很多个参数,可以重点考虑R2,在这里训练集效果一般,测试集效果太差了。。。。。可能是出现了过拟合。需要修改参数。

下图为回归系数图,第一个图为训练集的图,第二个为测试集的图,第三个为将所有数据进行训练的图。其中,重点关注R2和系数,系数越接近1越好,第一个图系数为0.49719,其他两个同理。

下图为几个数据集上的拟合图。

自动调参模块设置了几个学习率和隐藏单元,根据这两个组合从而找到最优的一次参数。训练次数即为这两个参数各自的集合个数相乘,如设置了学习率有两个,隐藏单元有两个,则训练次数为4次。

训练完成后,会得到一个最佳参数的热力图。同时会自动将最优参数写进去。

6.2 调参完成的汇报

在调完参后,就可以用所有的数据来训练模型了。当再次训练完模型后,即可汇报以下这些图像。

没有导出代码。

若想在参考文献中引用这个工具箱,可以在LSTM预测时间序列工具箱链接里复制里面的文献参考。

个人总结:先对模型进行调参,调参后会得到最优的学习率和隐藏单元数量,然后查看训练的结果(误差直方图,回归图等等)好不好,不好的话则对其他参数进行调整,直到得到一个较满意的结果,然后再基于最好的参数来训练所有的数据及预测,最终得到结果,关于这个结果,有RMSE,R2等等评价指标,可以选择其中表现较好的拿去论文中展示(前面模型的调参同理)。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/336924.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Pyro —— Velocity Voxel Scale

Velocity Voxel Scale是H19.5引入的新参数,该参数可单独定义volume和速度体素;根据参数设置,可观察到模拟时间的显著变化; Velocity Voxel Scale对DOP和SOP均可用;对DOP设置,该参数在Smoke Object&#xf…

Java安全 CC链1分析

Java安全之CC链1分析 什么是CC链环境搭建jdk下载idea配置创建项目 前置知识Transformer接口ConstantTransformer类invokerTransformer类ChainedTransformer类 构造CC链1CC链1核心demo1demo1分析 寻找如何触发CC链1核心TransformedMap类AbstractInputCheckedMapDecorator类readO…

RT-Thread 瑞萨 智能家居网络开发:RA6M3 HMI Board 以太网+GUI技术实践

不用放大了, 我在包里找到张不小的…… 以太网HMI线下培训-环境准备 这是社群的文档:【腾讯文档】以太网线下培训(HMI-Board) https://docs.qq.com/doc/DY0FIWFVuTEpORlNn 先介绍周六的培训是啥,然后再介绍一下要准…

赛车游戏简单单车C语言版

#include<stdio.h> #include<easyx.h> #include<time.h>#define WIDTH 512 #define HEIGHT 768//定义一个汽车类 struct FCar {//坐标float x, y;// 汽车种类int type;//汽车速度float speed; };//定义全局变量 图片坐标 IMAGE BG_IMG; //背景图片坐标 float…

[小程序]使用代码渲染页面

一、条件渲染 1.单个控制 使用wx:if"{{条件}}"来判断是否需要渲染这段代码&#xff0c;同时可以结合wx:elif和wx:else来判断 <view wx:if"{{type0}}">0</view> <view wx:elif"{{type1}}">1</view> <view wx:else>…

linux网络协议栈2--网络包接收发送流程

上文我们讲了报文格式&#xff0c;应该对数据传输格式有了一定了解&#xff0c;这篇文章主要讲述的是网络包接收和发送的流程&#xff0c;主要是大方面来介绍。 网络包接收流程 当网络数据帧通过网络传输到达网卡时&#xff0c;网卡会将网络数据帧通过DMA的方式放到环形缓冲区…

nginx日志分割

日志切割是线上常见的操作&#xff0c;能够控制单个日志文件的大小&#xff0c;便于对日志进行管理 给nginx主进程发送一个重新打开的信号&#xff0c;让nginx重新生成新的日志文件 nginx -s reopen 这个命令等同于kill -USR1 cat nginx.pid 切割日志文件shell命令 #!/bin/bas…

Flink处理函数(3)—— 窗口处理函数

窗口处理函数包括&#xff1a;ProcessWindowFunction 和 ProcessAllWindowFunction 基础用法 stream.keyBy( t -> t.f0 ).window( TumblingEventTimeWindows.of(Time.seconds(10)) ).process(new MyProcessWindowFunction()) 这里的MyProcessWindowFunction就是ProcessWi…

rk1126, 实现 yolov8 目标检测

基于 RKNN 1126 实现 yolov8 目标检测 Ⓜ️ RKNN 模型转换 ONNX yolo export model./weights/yolov8s.pt formatonnx导出 RKNN 这里选择输出 concat 输入两个节点 onnx::Concat_425 和 onnx::Concat_426 from rknn.api import RKNNONNX_MODEL ./weights/yolov8s.onnxRKNN_MOD…

C语言练习day8

变种水仙花 变种水仙花_牛客题霸_牛客网 题目&#xff1a; 思路&#xff1a;我们拿到题目的第一步可以先看一看题目给的例子&#xff0c;1461这个数被从中间拆成了两部分&#xff1a;1和461&#xff0c;14和61&#xff0c;146和1&#xff0c;不知道看到这大家有没有觉得很熟…

Spring Boot整合Redis的高效数据缓存实践

引言 在现代Web应用开发中&#xff0c;数据缓存是提高系统性能和响应速度的关键。Redis作为一种高性能的缓存和数据存储解决方案&#xff0c;被广泛应用于各种场景。本文将研究如何使用Spring Boot整合Redis&#xff0c;通过这个强大的缓存工具提高应用的性能和可伸缩性。 整合…

对#多种编程语言 性能的研究和思考 go/c++/rust java js ruby python

对#多种编程语言 性能的研究和思考 打算学习一下rust 借着这个契机 简单的写了计算圆周率代码的各种语言的版本 比较了一下性能 只比拼单线程简单计算能力 计算十亿次循环 不考虑多线程 go/c/rust java js ruby python 耗时秒数 1:1:1:22:3:250:450 注&#xff1a;能启用则启…

Python 自动化测试:数据驱动

软件质量。这种测试&#xff0c;在功能测试中非常耗费人力物力&#xff0c;但是在自动化中&#xff0c;却比较好实现&#xff0c;只要实现了测试操作步骤&#xff0c;然后将多组测试数据以数据驱动的形式注入&#xff0c;就可以实现了。 前面文章学习了参数化&#xff0c;当数…

【机组】算术逻辑单元带进位运算实验的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《机组 | 模块单元实验》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 ​ 目录 &#x1f33a;一、 实验目…

MySQL锁机制与优化实践

数据库乐观和悲观锁 乐观锁 比如在数据库中设置一个版本字段&#xff0c;每操作一次&#xff0c;都会将这行对应的版本号1&#xff0c;这样下次更新都会拿到最新的版本号更新&#xff0c;如果一个事务拿到了版本号但是更新前其他人已经将版本号升级了&#xff0c;那么当前事务…

消除噪音:Chain-of-Note (CoN) 强大的方法为您的 RAG 管道提供强大动力

论文地址&#xff1a;https://arxiv.org/abs/2311.09210 英文原文地址&#xff1a;https://praveengovindaraj.com/cutting-through-the-noise-chain-of-notes-con-robust-approach-to-super-power-your-rag-pipelines-0df5f1ce7952 在快速发展的人工智能和机器学习领域&#x…

HackTheBox - Medium - Linux - BackendTwo

BackendTwo BackendTwo在脆弱的web api上通过任意文件读取、热重载的uvicorn从而访问目标&#xff0c;之后再通过猜单词小游戏获得root 外部信息收集 端口扫描 循例nmap Web枚举 feroxbuster扫目录 /api/v1列举了两个节点 /api/v1/user/1 扫user可以继续发现login和singup 注…

(已解决)阿里云ECS服务器8080端口无法访问

最近购买阿里云服务器项目部署的时候&#xff0c;配置开放了阿里云8080端口&#xff0c;却一直访问不了&#xff0c;看了阿里云社区几个帖子&#xff0c;都没有找到正确的解决方法。 然后CSDN看了几个帖子&#xff0c;方法也不对。 索性&#xff0c;我很早之前就使用阿里云EC…

【JSON2WEB】01 WEB管理信息系统架构设计

WEB管理信息系统分三层设计&#xff0c;分别为DataBase数据库、REST2SQL后端、JSON2WEB前端&#xff0c;三层都可以单独部署。 1 DataBase数据库 数据库根据需要选型即可&#xff0c;不需要自己设计开发&#xff0c;一般管理信息系统都选关系数据库&#xff0c;比如Oracle、…

二维旋转公式推导+旋转椭圆的公式推导

二维旋转公式推导+旋转椭圆的公式推导 二维旋转公式推导旋转椭圆的公式推导二维旋转公式推导 x , y x,y x,y表示二维坐标系中原坐标点, x ′ , y ′ x,y x′,y′表示逆时针旋转 β \beta β之后的坐标点: x ′ = x cos ⁡ ( β ) − y sin ⁡ ( β ) y ′ = y cos ⁡ ( β )…