STL——list

1、list介绍

1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2. list 的底层是带头双向循环链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3. list forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。
4. 与其他的序列式容器相比 (array vector deque) list 通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比, list forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list的第6 个元素,必须从已知的位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)

2、list用法

list的接口有很多,具体如下

具体用法可以查看 https://legacy.cplusplus.com/reference/list/list/?kw=list

下面我介绍一些常用的接口的用法

2.1 list的构造

构造函数(constructor)
接口说明
list (size_type n, const value_type& val = value_type())
构造的 list 中包含 n 个值为 val 的元素
list()
构造空的 list
list (const list& x)
拷贝构造函数
list (InputIterator first, InputIterator last)
[first, last) 区间中的元素构造 list
// list的构造
void TestList1()
{
    list<int> l1;                         // 构造空的l1
    list<int> l2(4, 100);                 // l2中放4个值为100的元素
    list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    list<int> l4(l3);                    // 用l3拷贝构造l4

    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    list<int> l5(array, array + sizeof(array) / sizeof(int));

    // 列表格式初始化C++11
    list<int> l6{ 1,2,3,4,5 };

    // 用迭代器方式打印l5中的元素
    list<int>::iterator it = l5.begin();
    while (it != l5.end())
    {
        cout << *it << " ";
        ++it;
    }       
    cout << endl;

    // C++11范围for的方式遍历
    for (auto& e : l5)
        cout << e << " ";

    cout << endl;
}

2.2list iterator的使用

迭代器底层是使用指针实现的,所以,我们可以把迭代器当成一个指针,指向list的某个结点。所有的容器的迭代器都被重命名为iterator

函数声明
接口说明
begin + end
返回第一个元素的迭代器 + 返回最后一个元素下一个位置的迭代器
rbegin +
rend
返回第一个元素的 reverse_iterator, end 位置 返回最后一个元素下一个位置的
reverse_iterator, begin 位置
【注意】
1. begin end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动
2. rbegin(end) rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动
//iterator
void PrintList(const list<int>& l)
{
    for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        cout << *it << " ";
        // *it = 10; 这里是const_iterator ,it指向的内容不能被修改,所以编译不通过
    }

    cout << endl;
}

void TestList2()
{
    int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
    list<int> l(array, array + sizeof(array) / sizeof(array[0]));
    // 使用正向迭代器正向list中的元素
    // list<int>::iterator it = l.begin();   
    auto it = l.begin();                     
    while (it != l.end())
    {
        cout << *it << " ";
        ++it;
    }
    cout << endl;

    // 使用反向迭代器逆向打印list中的元素
    // list<int>::reverse_iterator rit = l.rbegin();
    auto rit = l.rbegin();
    while (rit != l.rend())
    {
        cout << *rit << " ";
        ++rit;
    }
    cout << endl;
}

2.3list modifiers

函数声明
接口说明
push_front
list 首元素前插入值为 val 的元素
pop_front
删除 list 中第一个元素
push_back
list 尾部插入值为 val 的元素
pop_back
删除 list 中最后一个元素
insert
list position 位置中插入值为val的元素
erase
删除 list position 位置的元素
swap
交换两个 list 中的元素
clear
清空 list 中的有效元素
void TestList1()
{
    int array[] = { 1, 2, 3 };
    list<int> L(array, array + sizeof(array) / sizeof(array[0]));

    // 在list的尾部插入4,头部插入0
    L.push_back(4);
    L.push_front(0);
    PrintList(L);

    // 删除list尾部节点和头部节点
    L.pop_back();
    L.pop_front();
    PrintList(L);
}

// insert /erase 
void TestList2()
{
    int array1[] = { 1, 2, 3 };
    list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

    // 获取链表中第二个节点
    auto pos = ++L.begin();
    cout << *pos << endl;

    // 在pos前插入值为4的元素
    L.insert(pos, 4);
    PrintList(L);

    // 在pos前插入5个值为5的元素
    L.insert(pos, 5, 5);
    PrintList(L);

    // 在pos前插入[v.begin(), v.end)区间中的元素
    vector<int> v{ 7, 8, 9 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);

    // 删除pos位置上的元素
    L.erase(pos);
    PrintList(L);

    // 删除list中[begin, end)区间中的元素,即删除list中的所有元素
    L.erase(L.begin(), L.end());
    PrintList(L);
}

// resize/swap/clear
void TestList3()
{
    // 用数组来构造list
    int array1[] = { 1, 2, 3 };
    list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
    PrintList(l1);

    // 交换l1和l2中的元素
    list<int> l2;
    l1.swap(l2);
    PrintList(l1);
    PrintList(l2);

    // 将l2中的元素清空
    l2.clear();
    cout << l2.size() << endl;
}

2.4list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了 。因为 list 的底层结构为带头结点的双向循环链表 ,因此 list 中进行插入时是不会导致 list 的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
//这是一个模拟List的clear的实现
//这是错误写法
void clear()
{
	iterator it = begin();
	while (it != end())
	{
		erase(it);
        it++;
	}
}
//这段代码之所以错误,主要是因为,it指向的那个结点已经被删除了,所以it再++是找不到后面节点的位置的。
///
//正确写法
void clear()
{
	iterator it = begin();
	while (it != end())
	{
		it=erase(it);//删除这个结点,返回这个结点的下一个位置给it。
	}
}

3、list的模拟实现

3、1node类模板

#include<iostream>
#include<assert.h>
using namespace std;
namespace A
{
//用命名区间A把自己实现的list圈起来,防止与库里面的混淆

........
}

首先先构造出结点的类模板list_node<T>,因为struct默认所有成员都是public,我们需要在类外面使用list_node,所以这里使用struct。定义三个成员变量 _next下一个节点,_pre上一个结点和数据data。

template <class T>
struct list_node
{
	typedef list_node<T> Node;
	Node* _next;
	Node* _pre;
	T _data;
	list_node(const T& val=T())
		:_next(nullptr)
		,_pre(nullptr)
		,_data(val)
	{

	}
};

3、2迭代器类模板

l链表的物理结构并不是连续的,它不像string、vector的结构,对list进行++时找不到它的下一个结点的。所以我们必须自己模拟出它的迭代器。
定义一个迭代器类模板,在里面服用list_node类,定义出迭代器的成员变量_node。在里面实现出我们需要用的运算符
template<class T,class Ref,class Ptr>
struct __list_iterator
{
	typedef list_node<T> Node;
	typedef __list_iterator<T,Ref,Ptr> self;
	__list_iterator(Node* node)
		:_node(node)
	{
		
	}
	Node* _node;
	self& operator++()
	{
		_node = _node->_next;
		return *this;
	}
	self operator++(int)
	{
		self tmp(*this);
		_node = _node->_next;
		return tmp;
	}
	self& operator--()
	{
		_node = _node->_pre;
		return *this;
	}
	self operator--(int)
	{
		self tmp(*this);
		_node = _node->pre;
		return tmp;
	}
	Ref operator*()
	{
		return _node->_data;
	}
	Ptr operator->()
	{
		return &_node->_data;
	}
	bool operator != (const self& s)
	{
		return _node != s._node;
	}
};

3、3list类模板

实现出list的迭代器,我们就可以正式来模拟list接口了。

首先定义一个哨兵位结点,这也是list类模板唯一的成员变量。在此我们复用list_node类模板和迭代器类模板,然后我们实现list的各个接口

template<class T>
class list
{
	typedef list_node<T> Node;
	
public:
	typedef __list_iterator<T,T&,T*> iterator;
	typedef __list_iterator<T,const T&,const T*> const_iterator;
	void init()
	{
		_head = new Node;
		_head->_next = _head;
		_head->_pre = _head;
	}
	list()
	{
		init();
	}
	void clear()
	{
		iterator it = begin();
		while (it != end())
		{
			it=erase(it);
		}
	}
	~list()
	{
		clear();
		delete _head;
		_head = nullptr;
	}
	void swap(list<T>& lt)
	{
		std::swap(_head, lt._head);
	}
	list(const list<T>& lt)//构造
	{
		_head = new Node;
		_head->_next = _head;
		_head->_pre = _head;
		for (auto e : lt)
		{
			push_back(e);
		}
	}
	list<T>& operator=(list<T> lt)
	{
		swap(lt);
		return *this;
	}
	void push_back(const T& x)
	{
		Node* tail = _head->_pre;
		Node* newnode = new Node(x);
		tail->_next = newnode;
		newnode->_pre = tail;
		newnode->_next = _head;
		_head->_pre = newnode;
	}
	void push_front(const T& x)
	{
		insert(begin(), x);
	}
	iterator insert(iterator pos,const T& x)
	{
		Node* newnode = new Node(x);
		Node* cur = pos._node;
		Node* pre = cur->_pre;

		pre->_next = newnode;
		newnode->_pre = pre;
		newnode->_next = cur;
		cur->_pre = newnode;
		return newnode;
	}
	iterator erase(iterator pos)
	{
		assert(pos != end());
		Node* cur = pos._node;
		Node* pre = cur->_pre;
		Node* next = cur->_next;
		pre->_next=next;
		next->_pre = pre;
		delete cur;
		return next;
	}
	void pop_back()
	{
		erase(--end());
	}
	void pop_front()
	{
		erase(begin());
	}
	iterator begin()
	{
		return _head->_next;
	}
	iterator end()
	{
		return _head;
	}
	const_iterator begin() const
	{
		return _head->_next;
	}
	const_iterator end() const
	{
		return _head;
	}
private:
	Node* _head;
};

上面就是list的常见接口的模拟实现,有些并不常见的我没有在此写出原来,如果以后见到的时候大家查一下List的文档就可以了,使用方法都很简单。

4、list的优缺点

带头结点的双向循环链表 ,list这个容器常用于适合大量插入删除数据的场景,由于它是一个个结点链接,所以它移动节点会很方便,并不需要挪动数据,头插头删,或者任意位置插入删除都很高效。但是它的缺点也很明显:不支持随机访问,访问某个元素效率O(N),底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低。大家使用的时候注意能否适合使用List。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/336178.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

三国游戏(寒假每日一题+贪心、枚举)

题目 小蓝正在玩一款游戏。 游戏中魏蜀吴三个国家各自拥有一定数量的士兵 X,Y,Z&#xff08;一开始可以认为都为 0&#xff09;。 游戏有 n 个可能会发生的事件&#xff0c;每个事件之间相互独立且最多只会发生一次&#xff0c;当第 i个事件发生时会分别让 X,Y,Z 增加 Ai,Bi…

谈判(贪心算法)

题目 import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Scanner;public class Main {public static void main(String[] args) { Scanner sc new Scanner(System.in);int n sc.nextInt();sc.nextLine();List<Integ…

【GitHub项目推荐--AI杀入斗地主领域】【转载】

AlphaGo&#xff1a;第一个战胜围棋世界冠军的人工智能机器人。 我不会玩围棋&#xff0c;没办法和 AlphaGO 对局。但是我喜欢玩斗地主&#xff0c;有斗地主人工智能机器人吗&#xff1f; 有&#xff0c;而且还开源了。DouZero&#xff1a;快手团队开发的斗地主AI。别的不说&…

CSS注释

CSS注释 哇&#xff0c;最近我发现CSS里面的注释真是个好东西呢&#xff01;虽然它们不会在网页上显示出来&#xff0c;但是对于我这样的新手来说&#xff0c;真的很有助于理解代码是怎么工作的。 CSS注释的小秘密 你知道吗&#xff0c;CSS里的注释就像是小纸条&#xff0c;…

funcy,一个超酷的 Python 库

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 大家好&#xff0c;今天为大家分享一个超酷的 Python 库 - funcy。 Github地址&#xff1a;https://github.com/Suor/funcy 函数式编程是一种强大的编程范式&#xff0c;它强调将计算视为数学函数的评估&#x…

ELK之使用Grafana读取ES集群的Nginx日志进行分析展示

一、前提: 直通车 ------------>↓↓↓↓↓↓ 需要ES集群 https://blog.csdn.net/wdy_2099/article/details/125441436需要filebeat https://blog.csdn.net/wdy_2099/article/details/125445893需要logstash https://blog.csdn.net/wdy_2099/article/details/125464226需要…

python入门知识点:分支结构

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 1.内容导图 2.流程图介绍 绘制要求&#xff1a;不能出现程序语言的语法 3.百分制转五级计分制 分支结构&#xff1a;语句块&#xff0c;冒号缩进表示归属 单分支&…

系统架构设计师

软考系统架构设计师笔记 专用的成电路&#xff08;Application Specific Integrated Circuit&#xff0c;ASIC) PTR记录&#xff1a;Pointer Record&#xff0c;常被用于反向地址解析&#xff0c;即通过IP地址查询服务器域名。 软件工程 软件开发模型 【增量模型的优点】 …

全网最详细丨2024年AMC8真题及答案来了

目录 前言 真题回忆 真题解析 结尾 前言 相信大家都已经知道今年AMC8出事情了吧&#xff0c;但最重要的还是要从中学到新知识。 听说今年考生被提前12分钟强制交卷了&#xff0c;肯定因为试题泄露了。 最新回复&#xff1a;我们这边已经退费了 真题回忆 需要word文档的请…

年会相关的英语小知识,柯桥成人学英语推荐哪里?

“年会”用英语怎么说&#xff1f; “年会”一般在一年的末尾举办&#xff0c;中国有些地方把这个时间称为“尾牙”&#xff0c;即指商家一年活动的尾声。“年会”中的“年”的翻译最好体现出“末尾”的意思。 因此&#xff0c;可以说&#xff1a;year-end party&#xff08;年…

国科大模式识别与机器学习2015-2019、2021、2023仅考题

2015 &#xff08;8&#xff09;试描述线性判别函数的基本概念&#xff0c;并说明既然有线性判别函&#xff0c;为什么还需要非线性判别函数&#xff1f;假设有两种模式&#xff0c;每类包括6个4维不同的模式&#xff0c;且良好分布。如果他们是线性可分的。问权向量至少需要几…

音频筑基:时延、帧长选取的考量

音频筑基&#xff1a;时延、帧长选取的考量 帧长与时延的关系帧长变化的影响参考资料 音频算法中&#xff0c;时延和音频帧长的选择通常是个需要平衡的参数&#xff0c;这里分析下背后的考量因素。 帧长与时延的关系 一般来说&#xff0c;帧长是音频算法端到端时延的子集&…

Spring第七天(Spring事务)

简介 事务作用&#xff1a;在数据层保障一系列的数据库操作同操作同成功同失败 Spring事务作用&#xff1a;在数据层或业务层保障一系列的数据库操作同成功同失败 实现 第一步、在业务层接口上添加Spring事务管理 public interface BookService{Transactionalpublic void sa…

ARMv8-AArch64 的异常处理模型详解之异常类型 Exception types

异常类型详解 Exception types 一&#xff0c; 什么是异常二&#xff0c;同步异常&#xff08;synchronous exceptions&#xff09;2.1 无效的指令和陷阱异常&#xff08;Invalid instructions and trap exceptions&#xff09;2.2 内存访问产生的异常2.3 产生异常的指令2.4 调…

Hadoop详解

Hadoop 概念 就是一个大数据解决方案。它提供了一套分布式系统基础架构。 核心内容包含 hdfs 和mapreduce。hadoop2.0 以后引入 yarn. hdfs 是提供数据存储的&#xff0c;mapreduce 是方便数据计算的。 hdfs 又对应 namenode 和 datanode. namenode 负责保存元数据的基本信息…

如何进行产品的人机交互设计?

产品的人机交互设计是指通过用户界面和用户体验设计来优化产品与用户之间的交互过程&#xff0c;从而提高产品的易用性、可用性和用户满意度。人机交互设计需要考虑用户的需求、行为模式、心理感受以及技术实现&#xff0c;下面我将介绍如何进行产品的人机交互设计。 首先&…

MySQL 的delete、truncate、drop 有什么区别

目录 一、从执行速度上来说 二、从使用场景和原理上讲 1、DELETE 2、truncate 3、drop 希望能够帮助到大家&#xff01;&#xff01;&#xff01; 一、从执行速度上来说 drop > truncate >delete 二、从使用场景和原理上讲 1、DELETE DELETE from TABLE_NAME wh…

DAY17 LinuxC高级

文章目录 shell中的特殊字符管道 |输入输出重定向命令置换符 系统维护命令用户管理命令进程管理命令1.ps 查看进程的状态2.top 动态显示进程状态3.renice&#xff1a;修改正在运行的进程的优先级4.nice 定义运行的进程优先级5.kill 发送一个信号 文件系统命令linux 文件系统文…

Postman接口测试高阶——精通Mock Server模拟服务器的创建及使用等

文章目录 一、什么是Mock Server二、为什么使用Mock Server四、Mock Server使用场景五、创建Mock Server模拟服务器1.创建Mock Server2.配置Mock Server3.创建Mock Server模拟服务器成功 六、使用Mock Server模拟服务器七、修改Mock Server模拟服务器配置 一、什么是Mock Serve…

makefile里面的变量使用,系统变量

文章目录 makefile里面的变量使用 makefile里面的变量使用 calc:add.o sub.o multi.ogcc add.o sub.o multi.o calc.cpp -o calcadd.o:add.cppgcc -c add.cpp -o add.osub.o:sub.cppgcc -c sub.cpp -o sub.omulti.o:multi.cppgcc -c multi.cpp -o multi.oclean:rm -rf *.o cal…