DAMA数据治理CDGA/CDGP认证考试备考经验分享

一,关于DAMA中国和CDGA/CDGP考试

国际数据管理协会(DAMA国际)是一个全球性的专业组织,由数据管理和相关的专业人士组成,非营利性机构,厂商中立。协会自1980年成立以来,一直致力于数据管理和数字化的研究、实践及相关知识体系的建设,先后发行了《DAMA 数据管理字典》和《DAMA数据管理知识体系》等。该知识体系目前已被广泛使用,并已成为业界的标杆和权威。为紧贴国内数据治理和数字化的发展趋势,2020年10月起,国际数据管理协会中国分会(DAMA中国)对DAMA国际数据管理专业人员认证( CDMP )的考试语言、考试形式、考试内容、证书类型等进行了适当本地化重构。重构后认证考试分为数据治理工程师—CDGA( Certified Data Governance Associate)和数据治理专家—CDGP( Certified Data Governance Professional )。

DAMA中国承担认证考试命题工作,并定期组织中文考试,对考试通过者由DAMA中国颁发认证证书。中文版的CDGA、CDGP和英文版的CDMP证书国际通用,行业认可,是数据管理领域最专业的职业认证之一。

 

二,CDGA 考试总结

2.1 我的复习方法

主要方式就是看书,包括《DAMA-DMBOK2 数据管理知识体系指南》和《穿越数据的迷宫:数据管理执行指南》,这两本书在网络都有售卖。

 

其中后者可以看作是前者的简化版本,便于从宏观上掌握 DMBOK2 的纲要,主要的还是靠DAMA-DMBOK2 来学习,对这本教材我一共看了四遍:

  • 通读教材,了解基本内容和不同知识领域自己的掌握情况,做到心中有数
  • 精读教材,结合笔记、思维导图系统梳理知识点,这一遍时间最长
  • 结合了数贝(厦门数贝信息科技有限公司提供的“databok数据课”,可以在微信中搜索到小程序“数贝”)提供的练习题进行模拟训练,对训练过程中出错的题目反向查找知识点进行强化学习,加深理解
  • 查漏补缺,快速过一遍教材

当然,实际的学习过程可没有说起来这么轻松,建议大家还是投入相当的时间和精力去学习。

可以留言~ 

2.2 心得体会

1、对于 CDGA 考试,全是单选题,个人觉得最重要的就是对概念的清晰理解和把握,因此许多东西确实是要“背”的。对于重要章节,如数据治理、数据架构、建模与设计、元数据、数据质量、数据安全、数据仓库和商务智能等,应该较为全面的学习;而对于其它次重要章节,则一定要重视语境关系图,把每个知识领域的目标、原则、输入、活动、交付成果、参与人员、方法、工具、度量指标等搞清楚。这些知识点相当零碎,要想全背诵下来,还是不太现实的,但多看几遍你就会找到一些语感,考试时凭直觉不会犯重大错误。

2、正因为无法做到精确背诵,在考试时有些模糊的题目,我尽量做到以第一感觉为主,不想太多。

3、做模拟题有一定的作用,确实有一些题目会押中,但比例不大,还是要靠学习为主,模拟题主要是帮助进行知识点回顾。

4、如果有一些信息系统相关的经验,有些题目对你来说就很简单了。例如数据建模相关的。

5、务必注意考试时间,我是等最后快没时间了才做完(毕竟有些题目还是举棋不定,耽误了时间,100道题目100分钟,需要快速做决定),后面十几分钟手忙脚乱地填涂答题卡,没有多少时间检查。

6、现在看,CDGA 还是相对简单的,相关概念清楚,配合一些经验和常识,即使没见过,也有一定的机率“蒙”对,但为了提高这个机率,还是努力看书吧!

 

三,CDGP 考试心得

3.1 我的复习方法

对于 CDGP,我丝毫不敢掉以轻心。一方面是参加 CDGA 时发现自己确实掌握得不牢固,另一方面也知道CDGP 不像 CDGA 题目类型简单,有10道单选题,15道多选题,后面几道大题内容和出题方式都未知。因此在初期的复习是有些茫然的,所幸参加了数贝提供的公开培训,了解了 CDGP 考试的相关情况,当时还做了一些要点记录:1、CDGP考试论述题内容

  • 重点包括架构设计、逻辑模型设计、性能问题解决方案、数据质量、元数据问题解决方案等;
  • 题型包括知识点类(如数据质量问题的来源)、活动排序类(如数据科学、主数据等活动超过七个的知识领域)、开放类(结合经验论述,如集成外部数据时如何做到标准化);
  • 尤其应当关注数据仓库与BI、大数据领域的架构设计案例、架构图;
  • 模型设计可能包括关系模型或维度模型。

2. 答题要点

  • 写字工整;
  • 写出要点,不需要长篇大论;
  • 只要言之有理就可能得分;
  • 有些题目可能会有些绕弯,需要认真辨析题义。

这些内容虽然和后续我参加考试的体会并不是完全一致的(毕竟DAMA中国的老师们也在对考试进行不断迭代),但它确实驱散了眼前 CDGP 考试的一部分迷雾,为我修订自己的复习方法提供了信息支持:

  • 我再次系统地看了一遍书,就当自己从来没看过。这一遍居然看出了不少新的体会,逐步在头脑中形成了一个整体框架,甚至可以靠回忆来把知识体系串起来了。
  • 我手动把DMBOK2中所有认为重要的图表都画了一遍,以应对可能出现的“画图”题目。尤其是数据仓库和商务智能中的那两个架构图(CIF和数仓棋子视图),反反复复画了好几遍,直到可以“默写”,后来考试虽然没用上这两张图,但它让我对数据仓库的架构加深了理解,事实上题目中也确实有数据仓库架构类的题目。

3. 扩展阅读,我给自己制订了一个书目。不过需要注意的是,这些大部头要想在短短一两个月全部啃下来是不可能的,一方面有些书我以前已经读过了,另一方面,我主要是将这些外围知识与 DMBOK2 中的知识体系连接起来,不到于有枝无叶,所以更多是快速浏览学习。

图书较多,就不附链接了,书名如下:

  • 《穿越数据的迷宫:数据管理执行指南》
  • 《数据仓库》
  • 《数据治理:工业企业数字化转型之道》
  • 《数据仓库工具箱:维度建模权威指南》
  • 《大数据架构详解:从数据获取到深度学习》
  • 《主数据驱动的数据治理》
  • 《中台实战:数字化转型方法论与解决方案》
  • 《中台战略:中台建设与数字商业》
  • 《数据治理:如何设计、开展和保持有效的数据治理计划》
  • 《数据中台架构:企业数据化最佳实践》
  • 《数据中台:让数据用起来》
  • 《数字化转型方法论:落地路径与数据中台》
  • 《Hadoop构建数据仓库实践》
  • 《NoSQL数据库入门与实践》
  • 《数据治理与数据安全》
  • 《大数据分析:数据仓库项目实战》

3. 把各知识领域的语境关系图打印出来装订成了一个小本,有空就拿出来看看,几乎快背下来了(主要是想应付上文所说的“排序题”,不过也没用上,只是这回碰到单选题,几乎不用犹豫了)。4. 最后,非常关键的一点,把数据建模与设计的知识重点复习了一下。从数贝的培训老师那里了解到,CDGP 建模是必考题,也就是针对特定的业务场景建立逻辑数据模型。作为信息系统的分析与设计人员,建模对我来说并不算陌生,但是对信息工程表示法(也就是鸭掌模型)我并不太熟悉,因此特地找了一些相关资料来学习,事实证明,用上了。

四. 总结

1、多看几遍书是非常必要的,尽管 DMBOK2 这本书很厚,知识点繁杂,很容易让人感觉千头万绪。但是世上本没有路,走的次数多了,也就踩出了一条路。

2、类似建模这些技能,是真的有必要练习的,因为你不仅要会,而且要快。

3、CDGA 重在厘清概念,CDGP 重理论应用,这的确是一个逐步深入的过程,如果能把这个学习的过程与工作结合起来,真正形成解决问题的技能而不是仅仅应付考试,岂不更好?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/33235.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置多帧采集模式(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置多帧采集模式(C#) Baumer工业相机Baumer工业相机BGAPISDK和多帧采集模式的技术背景Baumer工业相机通过BGAPISDK设置多帧采集模式功能1.引用合适的类文件2.通过BGAPISDK设置多帧采集模式功能 Baumer工业相…

Wolfram Mathematica 13.3 特别版

WOLFRAM MATHEMATICA 全球現代技術計算的權威系統 MATHEMATICA 三十年來,Mathematica 定義了技術計算領域的最新技術—並為全球數百萬創新者、教育工作者、學生和其他人提供了主要的計算環境。 Mathematica 以其卓越的技術和簡易實用廣受讚譽,提供了單…

13.RocketMQ之消息的存储与发送

1. 消息存储 1.1 消息存储 分布式队列因为有高可靠性的要求,所以数据要进行持久化存储。 消息生成者发送消息Broker收到消息,将消息进行持久化,在存储中新增一条记录返回ACK给生产者Broker消息给对应的消费者,然后等待消费者返回A…

【MOOC 作业】第5章 链接层

不是标答也不是参考答案 仅从个人理解出发去做题 1、(20分) 在某网络中标识为 A 到 E 的 5 个结点以星形与一台交换机连接,考虑在该网络环境中某个正在学习的交换机的运行情况。假定:该交换机表初始为空。B 向 E 发送一个帧,此时交换机将该数…

[内核笔记1]内核文件结构与缓存——inode和对应描述

由来:公司内部外网记录日志的方式现在都是通过Nginx模块收到数据发送到系统消息队列,然后由另外一个进程来从消息队列读取然后写回磁盘这样的操作,尽量的减少Nginx的阻塞。 但是由于System/V消息队列在使用前需要规定消息长度,且…

自动驾驶专题介绍 ———— 激光雷达标定

文章目录 介绍激光雷达与激光雷达之间的外参标定激光雷达与摄像头的标定 介绍 激光雷达在感知、定位方面发挥着重要作用。跟摄像头一样,激光雷达也是需要进行内外参数标定的。内参标定是指内部激光发射器坐标系与雷达自身坐标系的转换关系,在出厂之前就已…

预训练、微调和上下文学习

最近语言模型在自然语言理解和生成方面取得了显著进展。这些模型通过预训练、微调和上下文学习的组合来学习。在本文中将深入研究这三种主要方法,了解它们之间的差异,并探讨它们如何有助于语言模型的学习过程。 预训练 预训练(Pre-training&…

计算机网络--网络传输基本概念

什么是IP地址? 在计算机出厂的时候,有一个唯一标识的物理地址。但是因为厂商不同等各种原因,用来标识一台计算机在网络中是比较麻烦的,于是出现了IP地址,IP地址是互联网协议地址的意思,是“Internet Protoc…

H.264帧结构和RTSP协议源码框架

目录 1、H264编码原理和基本概念 1.1、h.264编码原理 1.2、h.264编码相关的一些概念 2、H264的NAL单元详解 2.1、VCL和NAL的关系 2.2、H.264视频流分析工具 2.3、h264视频流总体分析 2.4、相关概念 3、H264的NAL单元---sps和pps 3.1、sps和pps详解 3.2、H264的profil…

InnoDB的三种行锁(提供具体sql执行案例分析)

InnoDB存储引擎有3种行锁的算法,其分别是: Record Lock(记录锁):单个行记录上的范围 (锁住某一行记录)Gap Lock(间隙锁):间隙锁,锁定一个范围,但不包含记录本…

人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Compariso…

基于深度学习的人脸面部表情识别系统【含Python源码+PyqtUI界面+原理详解】

功能演示 摘要:面部表情识别(Facial Expression Recognition)是一种通过技术手段识别人物图像中人脸面部表情的技术。本文详细介绍了其实现的技术原理,同时给出完整的Python实现代码、训练好的深度学习模型,并且通过Py…

GO语言使用最简单的UI方案govcl

接触go语言有一两年时间了。 之前用Qt和C#写过桌面程序,C#会被别人扒皮,极度不爽;Qt默认要带一堆dll,或者静态编译要自己弄或者找库,有的库还缺这缺那,很难编译成功。 如果C# winform可以编译成二进制原生…

商品减库在Redis中的运用

一.商品减库中存在问题 1.传统的代码 1.1引入jar包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.…

基于tensorflow深度学习的猫狗分类识别

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

机器学习之K-means聚类算法

目录 K-means聚类算法 算法流程 优点 缺点 随机点聚类 人脸聚类 旋转物体聚类 K-means聚类算法 K-means聚类算法是一种无监督的学习方法&#xff0c;通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇&#xff0c;使得同一簇内数据相…

基于小程序的用户服务技术研究

目录 1. 小程序开发技术原理 2. 用户服务设计3. 数据库设计和管理4. 安全和隐私保护5. 性能优化和测试总结 关于基于小程序的用户服务技术研究&#xff0c;这是一个非常广泛和复杂的领域&#xff0c;需要涉及多个方面的知识和技术。一般来说&#xff0c;基于小程序的用户服务技…

怎么学习数据库连接与操作? - 易智编译EaseEditing

学习数据库连接与操作可以按照以下步骤进行&#xff1a; 理解数据库基础知识&#xff1a; 在学习数据库连接与操作之前&#xff0c;首先要了解数据库的基本概念、组成部分和工作原理。 学习关系型数据库和非关系型数据库的区别&#xff0c;了解常见的数据库管理系统&#xff…

HTTP协议

HTTP协议专门用于定义浏览器与服务器之间交互数据的过程以及数据本身的格式 HTTP概述 HTTP是一种客户端&#xff08;用户&#xff09;请求和服务器&#xff08;网站&#xff09;应答的标准&#xff0c;它作为一种应用层协议&#xff0c;应用于分布式、协作式和超媒体信息系统…

【springboot】—— 后端Springboot项目开发

后端Springboot项目开发 步骤1 先创建数据库&#xff0c;并在下面创建一个user表&#xff0c;插入数据&#xff0c;sql如下&#xff1a; CREATE TABLE user (id int(11) NOT NULL AUTO_INCREMENT COMMENT ID,email varchar(255) NOT NULL COMMENT 邮箱,password varchar(255)…