13.RocketMQ之消息的存储与发送

1. 消息存储

1.1 消息存储

分布式队列因为有高可靠性的要求,所以数据要进行持久化存储。

image.png

  1. 消息生成者发送消息
  2. Broker收到消息,将消息进行持久化,在存储中新增一条记录
  3. 返回ACK给生产者
  4. Broker消息给对应的消费者,然后等待消费者返回ACK
  5. 如果消息消费者在指定时间内成功返回ack,那么MQ认为消息消费成功,在存储中删除消息,即执行第6步;如果MQ在指定时间内没有收到ACK,则认为消息消费失败,会尝试重新push消息,重复执行4、5、6步骤
  6. MQ删除消息

1.1.1 存储介质

  • 关系型数据库DB

Apache下开源的另外一款MQ—ActiveMQ(默认采用的KahaDB做消息存储)可选用JDBC的方式来做消息持久化,通过简单的xml配置信息即可实现JDBC消息存储。由于,普通关系型数据库(如Mysql)在单表数据量达到千万级别的情况下,其IO读写性能往往会出现瓶颈。在可靠性方面,该种方案非常依赖DB,如果一旦DB出现故障,则MQ的消息就无法落盘存储会导致线上故障

  • 文件系统

    目前业界较为常用的几款产品(RocketMQ/Kafka/RabbitMQ)均采用的是消息刷盘至所部署虚拟机/物理机的文件系统来做持久化(刷盘一般可以分为异步刷盘和同步刷盘两种模式)。

    消息刷盘为消息存储提供了一种高效率、高可靠性和高性能的数据持久化方式。

    除非部署MQ机器本身或是本地磁盘挂了,否则一般是不会出现无法持久化的故障问题。

1.1.2 性能对比

文件系统>关系型数据库DB

1.1.3 消息的存储和发送

1.1.3.1消息存储:顺序写

磁盘如果使用得当,磁盘的速度完全可以匹配上网络 的数据传输速度。目前的高性能磁盘,顺序写速度可以达到600MB/s, 超过了一般网卡的传输速度。但是磁盘随机写的速度只有大概100KB/s,和顺序写的性能相差6000倍!因为有如此巨大的速度差别,好的消息队列系统会比普通的消息队列系统速度快多个数量级。RocketMQ的消息用顺序写,保证了消息存储的速度。

1.1.3.2消息发送

Linux操作系统分为【用户态】和【内核态】,文件操作、网络操作需要涉及这两种形态的切换,免不了进行数据复制。

一台服务器 把本机磁盘文件的内容发送到客户端,一般分为两个步骤:

1)read;读取本地文件内容;

2)write;将读取的内容通过网络发送出去。

这两个看似简单的操作,实际进行了4 次数据复制,分别是:

  1. 从磁盘复制数据到内核态内存;
  2. 从内核态内存复 制到运行程序用户态内存;
  3. 然后从运行程序用户态 内存复制到网络驱动的内核态内存;
  4. 最后是从网络驱动的内核态内存复 制到网卡中进行传输。

image.png

通过使用mmap的方式,可以省去向用户态的内存复制,提高速度。这种机制在Java中是通过MappedByteBuffer实现.

image.png

RocketMQ充分利用了上述特性,也就是所谓的“零拷贝”技术,提高消息存盘和网络发送的速度。

这里需要注意的是,采用MappedByteBuffer这种内存映射的方式有几个限制,其中之一是一次只能映射1.5\~2G 的文件至用户态的虚拟内存,这也是为何RocketMQ默认设置单个CommitLog日志数据文件为1G的原因了

1.1.4 消息存储结构

RocketMQ消息的存储是由ConsumeQueue和CommitLog配合完成 的,消息真正的物理存储文件是CommitLog,ConsumeQueue是消息的逻辑队列,类似数据库的索引文件,存储的是指向物理存储的地址。

每个Topic下的每个Message Queue都有一个对应的ConsumeQueue文件。

image.png

  • CommitLog:存储消息的元数据
  • ConsumerQueue:消息在CommitLog的索引。 记录了minOffset和maxOffset和已经消费了的消息的偏移量consumerOffset。可以通过offset去CommitLog查找消息。
  • IndexFile:为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程。
  • ConsumerQueue和messageQueue是一 一对应的。

1.1.5 刷盘机制

RocketMQ的消息是存储到磁盘上的,这样既能保证断电后恢复, 又可以让存储的消息量超出内存的限制。

RocketMQ为了提高性能,会尽可能地保证磁盘的顺序写。

消息在通过Producer写入RocketMQ的时 候,有两种写磁盘方式:同步刷盘和异步刷盘。

image.png

1.1.5.1同步刷盘

在返回写成功状态时,消息已经被写入磁盘。具体流程是,消息写入内存的PAGECACHE后,立刻通知刷盘线程刷盘, 然后等待刷盘完成,刷盘线程执行完成后唤醒等待的线程,返回消息写 成功的状态。

1.1.5.2异步刷盘

在返回写成功状态时,消息可能只是被写入了内存的PAGECACHE,写操作的返回快,吞吐量大;当内存里的消息量积累到一定程度时,统一触发写磁盘动作,快速写入。

1.1.5.3刷盘配置

同步刷盘还是异步刷盘,都是通过Broker配置文件里的flushDiskType 参数设置的,这个参数被配置成SYNC_FLUSH、ASYNC_FLUSH中的 一个。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/33232.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MOOC 作业】第5章 链接层

不是标答也不是参考答案 仅从个人理解出发去做题 1、(20分) 在某网络中标识为 A 到 E 的 5 个结点以星形与一台交换机连接,考虑在该网络环境中某个正在学习的交换机的运行情况。假定:该交换机表初始为空。B 向 E 发送一个帧,此时交换机将该数…

[内核笔记1]内核文件结构与缓存——inode和对应描述

由来:公司内部外网记录日志的方式现在都是通过Nginx模块收到数据发送到系统消息队列,然后由另外一个进程来从消息队列读取然后写回磁盘这样的操作,尽量的减少Nginx的阻塞。 但是由于System/V消息队列在使用前需要规定消息长度,且…

自动驾驶专题介绍 ———— 激光雷达标定

文章目录 介绍激光雷达与激光雷达之间的外参标定激光雷达与摄像头的标定 介绍 激光雷达在感知、定位方面发挥着重要作用。跟摄像头一样,激光雷达也是需要进行内外参数标定的。内参标定是指内部激光发射器坐标系与雷达自身坐标系的转换关系,在出厂之前就已…

预训练、微调和上下文学习

最近语言模型在自然语言理解和生成方面取得了显著进展。这些模型通过预训练、微调和上下文学习的组合来学习。在本文中将深入研究这三种主要方法,了解它们之间的差异,并探讨它们如何有助于语言模型的学习过程。 预训练 预训练(Pre-training&…

计算机网络--网络传输基本概念

什么是IP地址? 在计算机出厂的时候,有一个唯一标识的物理地址。但是因为厂商不同等各种原因,用来标识一台计算机在网络中是比较麻烦的,于是出现了IP地址,IP地址是互联网协议地址的意思,是“Internet Protoc…

H.264帧结构和RTSP协议源码框架

目录 1、H264编码原理和基本概念 1.1、h.264编码原理 1.2、h.264编码相关的一些概念 2、H264的NAL单元详解 2.1、VCL和NAL的关系 2.2、H.264视频流分析工具 2.3、h264视频流总体分析 2.4、相关概念 3、H264的NAL单元---sps和pps 3.1、sps和pps详解 3.2、H264的profil…

InnoDB的三种行锁(提供具体sql执行案例分析)

InnoDB存储引擎有3种行锁的算法,其分别是: Record Lock(记录锁):单个行记录上的范围 (锁住某一行记录)Gap Lock(间隙锁):间隙锁,锁定一个范围,但不包含记录本…

人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Compariso…

基于深度学习的人脸面部表情识别系统【含Python源码+PyqtUI界面+原理详解】

功能演示 摘要:面部表情识别(Facial Expression Recognition)是一种通过技术手段识别人物图像中人脸面部表情的技术。本文详细介绍了其实现的技术原理,同时给出完整的Python实现代码、训练好的深度学习模型,并且通过Py…

GO语言使用最简单的UI方案govcl

接触go语言有一两年时间了。 之前用Qt和C#写过桌面程序,C#会被别人扒皮,极度不爽;Qt默认要带一堆dll,或者静态编译要自己弄或者找库,有的库还缺这缺那,很难编译成功。 如果C# winform可以编译成二进制原生…

商品减库在Redis中的运用

一.商品减库中存在问题 1.传统的代码 1.1引入jar包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.…

基于tensorflow深度学习的猫狗分类识别

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

机器学习之K-means聚类算法

目录 K-means聚类算法 算法流程 优点 缺点 随机点聚类 人脸聚类 旋转物体聚类 K-means聚类算法 K-means聚类算法是一种无监督的学习方法&#xff0c;通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇&#xff0c;使得同一簇内数据相…

基于小程序的用户服务技术研究

目录 1. 小程序开发技术原理 2. 用户服务设计3. 数据库设计和管理4. 安全和隐私保护5. 性能优化和测试总结 关于基于小程序的用户服务技术研究&#xff0c;这是一个非常广泛和复杂的领域&#xff0c;需要涉及多个方面的知识和技术。一般来说&#xff0c;基于小程序的用户服务技…

怎么学习数据库连接与操作? - 易智编译EaseEditing

学习数据库连接与操作可以按照以下步骤进行&#xff1a; 理解数据库基础知识&#xff1a; 在学习数据库连接与操作之前&#xff0c;首先要了解数据库的基本概念、组成部分和工作原理。 学习关系型数据库和非关系型数据库的区别&#xff0c;了解常见的数据库管理系统&#xff…

HTTP协议

HTTP协议专门用于定义浏览器与服务器之间交互数据的过程以及数据本身的格式 HTTP概述 HTTP是一种客户端&#xff08;用户&#xff09;请求和服务器&#xff08;网站&#xff09;应答的标准&#xff0c;它作为一种应用层协议&#xff0c;应用于分布式、协作式和超媒体信息系统…

【springboot】—— 后端Springboot项目开发

后端Springboot项目开发 步骤1 先创建数据库&#xff0c;并在下面创建一个user表&#xff0c;插入数据&#xff0c;sql如下&#xff1a; CREATE TABLE user (id int(11) NOT NULL AUTO_INCREMENT COMMENT ID,email varchar(255) NOT NULL COMMENT 邮箱,password varchar(255)…

王益分布式机器学习讲座~Random Notes (1)

0 并行计算是什么&#xff1f;并行计算框架又是什么 并行计算是一种同时使用多个计算资源&#xff08;如处理器、计算节点&#xff09;来执行计算任务的方法。通过将计算任务分解为多个子任务&#xff0c;这些子任务可以同时在不同的计算资源上执行&#xff0c;从而实现加速计…

ChatGLM2-6B发布,位居C-Eval榜首

ChatGLM-6B自2023年3月发布以来&#xff0c;就已经爆火&#xff0c;如今6月25日&#xff0c;清华二代发布&#xff08;ChatGLM2-6B&#xff09;&#xff0c;位居C-Eval榜单的榜首&#xff01; 项目地址&#xff1a;https://github.com/THUDM/ChatGLM2-6B HuggingFace&#xf…

Sequential用法

目录 1.官方文档解释 1.1原文参照 1.2中文解释 2.参考代码 3.一些参考使用 3.1生成网络 3.2 感知机的实现 3.3组装网络层 1.官方文档解释 1.1原文参照 A sequential container. Modules will be added to it in the order they are passed in the constructor. A…