近10年,全球数据库市场加速变革,云数据库尤其是云原生数据库成为整个数据库市场的关键变量。某种程度上,亚马逊云科技作为全球云原生数据库的领导者,具有行业风向标的价值。
近期,发生了一件对全球数据库市场具有标志性的事情:依据Gartner的数据,亚马逊云科技作为一个纯云厂商,2022年数据库营收230亿美元,同比增长19.6%。在全球数据库市场份额方面,继2020年超过甲骨文之后,亚马逊云科技于2022年超过微软,夺得全球数据库领导者的桂冠。目前,亚马逊云科技占据2022年全球数据库市场25.3%的份额。从2013年首次出现在Gartner数据库市场份额图以来,亚马逊云科技的排名就在逐年上升,且是头部数据库巨头中上升态势最明显的云厂商。
某种意义上,亚马逊云科技的胜利,代表了云原生数据库的胜利。因此,从亚马逊云科技的发展情况来看,云原生数据库替代传统数据库的必然性,以及云原生数据库的未来发展趋势。
罗马不是一天建成的
云计算是亚马逊研发投入的“重镇”,每年数百亿美元的研发资源有很大一部分就投入云计算技术产品研发,而云原生数据库又是其中一个重要领域。云原生数据库是整个云计算有机整体的一部分,亚马逊云科技整体的技术优势,也对云数据库的发展大有裨益。可以说,亚马逊云科技在云原生数据库上的领先,是其整体云计算优势的一个“侧写”。正是长期高强度地研发投入,让亚马逊云科技不断取得技术突破。接下来,我们从亚马逊云科技在不同时间节点发布的数据库产品,来分析其在云原生数据库领域的技术创新历程:
2006年,Amazon S3:这虽然不是一个数据库产品,但S3的发布标志着亚马逊云科技开始进入云存储领域,为后续数据库产品的发展奠定了基础。
2009年,Amazon RDS:这是亚马逊云科技发布的首个云数据库产品,支持多种关系数据库引擎,如MySQL、PostgreSQL等,这标志着亚马逊云科技开始推动数据库服务的云化。
2011年,Amazon ElastiCache:这是一个完全管理的在内存中的数据存储,它优化了具有高吞吐量和低延迟的实时应用程序,在提高数据库性能和响应时间方面具有重要价值。
2012年,Amazon DynamoDB:这是亚马逊云科技发布的首个NoSQL数据库产品,支持键值存储模型,满足大规模、低延迟的数据处理需求,这标志着亚马逊云科技开始探索非关系数据库领域,推动数据库服务的多样化。同年,亚马逊云科技还推出Amazon Redshift,这是亚马逊云科技发布的首个数据仓库产品,提供PB级的数据分析服务,这标志着亚马逊云科技开始进入大数据处理领域,推动数据库服务的扩展性和分析能力。
2014年,Amazon Aurora:这是亚马逊云科技自主研发的关系数据库产品,兼容MySQL和PostgreSQL,但在性能和可用性上进行了优化,这标志着亚马逊云科技开始进行数据库引擎的创新,推动数据库服务的性能和可靠性。
2016年,Amazon Database Migration Service (DMS):DMS的发布意味着亚马逊云科技致力于提供更加全面的数据库迁移解决方案,进一步降低了用户从传统数据库向云原生数据库迁移的难度和复杂性。
2017年,Amazon DynamoDB Global Tables:这是DynamoDB的一种全球化解决方案,它允许在多个地理区域之间自动复制数据,从而提供了快速的本地性能和全球数据的故障转移能力,这是亚马逊云科技在全球分布式数据管理方面的重要创新。
2018年,Amazon Aurora Serverless v1:这是亚马逊云科技发布的首个无服务器数据库产品,根据实时负载自动调整数据库的计算能力,这标志着亚马逊云科技开始推动数据库服务的自动化和智能化。
2019年,Amazon DocumentDB:这是亚马逊云科技发布的兼容MongoDB API的文档数据库服务,体现了亚马逊云科技对开源数据库生态的重视和支持,以及其在提供更多样化的数据处理解决方案方面的持续创新。
2020年,Amazon Timestream:这是亚马逊云科技发布的首个时序数据库产品,专门用于处理时间序列数据,这标志着亚马逊云科技开始针对特定数据类型和应用场景进行数据库产品的创新。
2021年,Babelfish for Aurora,使得用户可以更容易地将现有的SQL Server数据库迁移到Aurora PostgreSQL。
2022年,Amazon Aurora Serverless v2,进一步优化了无服务器数据库的性能和响应速度,这标志着亚马逊云科技在数据库服务的自动化、智能化上做出了更深入的创新。
从上面的时间节点来看,云原生数据库技术创新方面的发展历程,是一个从云化、多样化、大数据处理、性能优化、自动化和智能化、特定数据类型处理、全球化到进一步的自动化和智能化的过程。无论是关系数据库,还是非关系数据库,无论是数据仓库,还是时序数据库,无论是全球化的数据管理,还是无服务器的数据库模型,亚马逊云科技都在其中发挥了引领者和推动者的作用。
需要指出的是,技术本身并不产生价值,技术的价值来源于应用。在这方面,亚马逊自身在使用数据库方面的真实经历,具有典型借鉴价值。早在2019年,亚马逊就将存储在近7500个Oracle数据库中的75 PB内部数据,迁移到Amazon DynamoDB (工作流引擎/客户档案/促销折扣管理)、Amazon Aurora (库存管理服务IMS)、Amazon Relational Database Service(Amazon RDS)、Amazon Redshift (分析型工作负载)、Amazon ElastiCache (缓存服务请求)等多项亚马逊云科技数据库中,涵盖了如复杂采购、目录管理、订单执行、会计系统、视频流工作负载等亚马逊全部的专有系统。并且,迁移过程无需停机。通过数据库迁移,成本降低了60%,间接费用降低了70%,性能却提升了40%。
实际上,不仅亚马逊可以通过应用云原生数据库来大幅提升效率、降低成本,其他企业也同样可以。并且,云原生数据库发展迅速,经过几年的发展,云原生数据库的价值除了降本增效外,还会为企业带来更多额外的业务收益。对于企业而言,可以通过采用先进的云原生数据库,来释放数据的业务价值。