基于YOLOv8深度学习的智能肺炎诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
26.【基于YOLOv8深度学习的人脸面部表情识别系统】27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:智能肺炎诊断系统可通过自动分析病人X射线肺部图像,快速地识别出肺炎征状。这项技术可以提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度。本文基于YOLOv8深度学习框架,通过5856张图片,训练了一个进行智能肺炎诊断的识别模型,可通过病人X射线肺部图像判断病人是否患有肺炎。并基于此模型开发了一款带UI界面的智能肺炎诊断系统,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

智能肺炎诊断系统运用了先进的YOLOv8深度学习算法,它可通过自动分析病人X射线肺部图像,快速地识别出肺炎征状。这项技术的重要性体现在提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度,特别是在公共卫生事件和疫情大流行期间。

智能肺炎诊断系统的应用场景主要包括以下几个方面:
医院急诊部门:快速筛查病患是否患有肺炎,缩短等待时间,做出迅速精准的治疗决策。
农村和偏远地区医疗中心:在专业医疗资源不足的地区,提供高质量的诊断服务,减少严重病情的漏诊率。
移动医疗设施和野战医院:在流动性场合或临时医疗设置中,提供即时的肺炎检测能力。
公共卫生监测和防控:对于流感季节或肺炎疫情防控,智能诊断系统可以作为一个关键的监测和控制工具。
长期照护设施和养老院:在高风险群体中,定期监控患者的肺部健康状况,及时发现潜在的呼吸系统问题。
总结而言,智能肺炎诊断系统的应用可以极大提高医疗系统响应肺炎以及其他肺部疾病的能力。这不仅对提高个体患者的医疗体验和治疗结果有好处,同时也增强了公共卫生系统面对流行性疾病挑战时的整体应对能力,尤其在资源有限或紧急情况中,它的价值更为凸显。

博主通过搜集病人X射线肺部的相关数据图片,根据YOLOv8的深度学习技术,基于python与Pyqt5开发了一款界面简洁的智能肺炎诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可通过病人X射线肺部图像判断病人是否患有肺炎,分为肺炎健康两种状态;
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的X射线肺部图像数据集共包含5856张图片,分为2个类别,分别是:['肺炎','健康']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO

# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/Data', epochs=300, batch=4)
    # results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过图片准确率曲线图我们可以发现,该模型的最高准确率约为0.88,结果还是很不错的。
在这里插入图片描述

在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IM-0003-0001.jpeg"

# 加载模型
model = YOLO(path, task='classify')

# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能肺炎诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,回复【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能肺炎诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/331268.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图像处理中,采用极线约束准则来约束特征点匹配搜索空间,理论上在极线上进行搜索。这里的极线是什么线,怎么定义的?基本矩阵F和本质矩阵E有什么区别?

问题描述:图像处理中,采用极线约束准则来约束特征点匹配搜索空间,理论上在极线上进行搜索。这里的极线是什么线,怎么定义的?基本矩阵F和本质矩阵E有什么区别? 问题1解答: 极线是通过极线几何学…

多特征变量序列预测-模型代码全家桶

包括代码、文献、文件解读!!! 包括多特征变量序列预处理的代码, 预测效果好!!!性能优越 包括 完整的风速数据集, 以及已经生成制作好的数据集、标签,对应代码均可以运行…

冻结Prompt微调LM: T5 PET (a)

T5 paper: 2019.10 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Task: Everything Prompt: 前缀式人工prompt Model: Encoder-Decoder Take Away: 加入前缀Prompt,所有NLP任务都可以转化为文本生成任务 T5论文的初衷如…

力扣刷MySQL-第四弹(详细讲解)

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:力扣刷题讲解-MySQL 🍹文章作者技术和水平很有限,如果文中出…

GPT应用程序的上线流程

将GPT应用程序上线涉及多个步骤,包括开发、测试、部署和发布。以下是一般的上线流程,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 开发和测试: 在开发阶段,确保您…

Spring MVC的原理

Spring MVC中的MVC即模型-视图-控制器,该框架围绕一个DispatcherServlet设计而成,DispatcherServlet会把请求分发给各个处理器,并支持可配置的处理器映射和视图渲染等功能。Spring MVC的具体工作流程如下: (1&#xff…

深度解析 Compose 的 Modifier 原理 -- Modifier.layout()、LayoutModifier

" Jetpack Compose - - Modifier 原理系列文章 " 📑 《 深入解析 Compose 的 Modifier 原理 - - Modifier、CombinedModifier 》 📑 《 深度解析 Compose 的 Modifier 原理 - - Modifier.composed()、ComposedModifier 》 📑 《 深…

redis安装-Linux为例

可以下载一个Shell或者MobaXterm工具,便于操作 在redis官网下载压缩包 开始安装 安装依赖 yum install -y gcc tcl切换目录 切换目录后直接把redis安装包拖到/user/local/src/下 cd /user/local/src/解压然后安装 #解压 tar -zxvf redis-7.2.4.tar.gz #安装 …

C语言——小细节和小知识12

一、倒置句子 将句子中的单词位置倒置,标点不用倒置,例如i love you.倒置结果是:you. love i。 1、两步翻转法 采用两步翻转法来实现单词位置的倒置。首先,它整体翻转整个字符串,然后再逐个翻转每个单词内的字符。 …

环形链表问题

环形链表 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&a…

如何录制屏幕视频?让视频制作更简单!

随着数字化时代的来临,录制屏幕视频成为一种常见的传播和教学方式。无论是制作演示文稿、教学视频,还是记录游戏操作,屏幕录制为用户提供了强大而灵活的工具。可是您知道如何录制屏幕视频吗?本文将深入介绍两种常见的屏幕录制方法…

vue el-select自定义搜索选择案例

开发中常见的有选择框并且输入关键词可以快速检索功能,刚好这次项目需求,就开始吧 需求:1、生成1000到100000的数可选择,递增1000 2、这些数必须三位数用逗号隔开,比如1,000.00这样的形式显示 3、输入关键词比如10&am…

zabbix监控平台(agent端)

引言:明人不说暗话,上一篇文章我们讲了zabbix的serrver端部署和配置,今天详细讲解一下agent端服务器(客户端)的配置和关联 1.进入官网 Zabbix:企业级开源监控解决方案 2.进入下载页面选择需要下载的版本信…

【JVM】JVM概述

JVM概述 基本介绍 JVM:全称 Java Virtual Machine,即 Java 虚拟机,一种规范,本身是一个虚拟计算机,直接和操作系统进行交互,与硬件不直接交互,而操作系统可以帮我们完成和硬件进行交互的工作特…

【网络安全】2024年一个漏洞4w+,网安副业挖SRC漏洞,躺着把钱挣了!

一个漏洞奖励2w,这是真实的嘛! 作为资深白帽,入行网安这些年也一直在接私活,副业赚的钱几乎是我工资的三倍!看到最近副业挖漏洞的内容非常火爆,我便决定将自己的经验分享出来,带我的粉丝们一起…

Vue3在点击菜单切换路由时,将ElementPlus UI库中el-main组件的内容滚动恢复到顶部

功能:Vue3在点击菜单切换路由时,将页面el-main的内容滚动到顶部,布局如下,使用UI组件库为ElementPlus 在网上搜很多都是在route.js中的router.beforeEach中使用window.scrollTop(0,0) 或 window.scrollTo(0,0) 滚动,但…

深入Docker5:安装nginx部署完整项目

目录 准备 为什么要使用nginx mysql容器构建 1.删除容器 2.创建文件夹 3.上传配置文件 4.命令构建mysql容器 5.进入mysql容器,授予root所有权限 6.在mysql中用命令运行sql文件 7.创建指定数据库shop 8.执行指定的sql文件 nginx安装与部署 1.拉取镜像 2…

c语言:用一个宏,可以将一个整数的二进制位的奇数位和偶数位交换。

题目 用一个宏,可以将一个整数的二进制位的奇数位和偶数位交换。 如:01,是1,交换完是10,是2. 思路 1.分别取出奇数位上的数字和偶数位上的数字 举个例子:1001 0110 1001 0110 奇…

4. 示例:更改监听端口

默认Spring Boot启动是监听在8080上的。 如果8080被使用,就会报以下错误。 这个时候可以更换一个新的端口。 server: port: 8180 然后再启动,启动成功并且绑定到端口8180。

【计算机硬件】2、指令系统、存储系统和缓存

文章目录 指令系统计算机指令的组成计算机指令执行过程指令的寻址方式(怎么样找到操作数?)1、顺序寻址2、跳跃寻址 指令操作数的寻址方式(怎么样找到操作数?)1、立即寻址方式2、直接寻址方式3、间接寻址方式…