ARHUD驾车导航技术概览

6e943502af3e6840d2e58208792c0ec2.png

ARHUD(Augmented Reality Head Up Display),即增强现实与抬头显示的结合,是一种将渲染元素投影在真实世界的技术,也是目前用户理解成本最低的展示方式。

HUD功能第一次应用是在二战中,被应用在枪械和战斗机上,80年代初期开始转向民用,90年代初期技术概念被正式提出,并被演变成为汽车上的功能。其实,汽车上还有很多军用转民用的配置,例如惯导装置。

ARHUD驾车导航,就是把车速限速、转向动作、引导线等重要的导航信息,投影到驾驶员视野正前方,让驾驶员尽量做到不低头、不转头就能看驾驶引导信息。

高德在ARHUD驾车导航方面做了大量研发工作并拥有业界领先的技术储备和实践经验,在2022年8月,高德地图与北汽、华为合作,推出北汽魔方ARHUD导航。

1.虚像距离(Virtual Image Distance)

9ea3f15781bbaa38d8ef9a553e3b6aff.png

虚像距离,Virtual Image Distance,简称VID,简单点说就是虚像到人眼的视觉距离,大家都知道人的眼睛也是有焦距的,看远和看近的焦距不同,因此如果VID的距离不够远,在看向较远的地方时ARHUD的显示会由于眼睛焦距的原因而虚化。

传统HUD的VID距离也就是在2.5米左右,而AR HUD的VID距离往往在10米以上,要做到跨车道显示的话,需要投影距离达到20米才行。

传统W-HUD其实可以理解为一个投影仪,将图像反射,投影到了挡风玻璃上(例如手机高德地图的HUD投影功能),实际上相当于把原本显示在仪表盘上的信息,投射到挡风玻璃上。其实这也是HUD设计的初衷——驾驶员不需要低头即可获得车辆行驶的相关信息。

但是W-HUD的图像尺寸有限(通常投影距离3m,显示尺寸15-20寸),能显示的信息较少,且图像不会与道路融合,驾驶员仍然需要将视线从路面上移开,重新对焦才能获得信息,这实际上违背了HUD的设计初衷。

2.视场角(Field Of View)

89ce369e0e2bc770ddc0332bcfc866c9.png

视场角,Field Of View,简称FOV,视场角包括了以驾驶员眼睛为中心的水平视场角和垂直视场角。传统HUD的FOV很小,一般只有5度。而AR HUD的水平视场角要在10°以上,理想ONE的ARHUD能够达到20°,问界M5的ARHUD也能够达到13°。

3.人眼位置(Eye Point)

人眼坐标(x, y, z),相对于车体坐标系的位置,以车头中心为坐标原点,单位 米。

人眼坐标会随着驾驶者的高矮、坐姿、头部位置移动而动态调整。

429e4dc5f9e82e7e6f0f83adb9ff6ec4.png

5536c989ff4f5faeb305a7728fad5a8e.png

4.虚像旋转角度(三自由度)


4.1. 沿X轴旋转角度(LDA、下视角)

a94f3b826f3693510e7ae4b20ece5702.png

4.2. 沿Y轴旋转角度(横滚角)

ccbf73f4992baa2f157411f1b36fd7bc.png

4.3. 沿Z轴旋转角度(朝向角)

044966e72060978549de7c0bffcf614e.png

5.虚像坐标转换(世界坐标转虚像坐标)

首先,看一下在相机投影中,世界坐标 转 像素坐标。

fe87e33c84a6438c8e538ae3bb2826fa.png

然后,看一下在HUD投影中,世界坐标 转 虚像坐标(单位也是像素)。

在已知 虚像距离、视场角、人眼位置、虚像角度 的前提下,就可以进行 世界坐标 与 虚像坐标 的互相转换。

53fe411f4e0cf0588f979d607bd0d406.png

通过对比相机投影 和 HUD投影 可以发现,相机投影中的焦距 与 HUD投影中的虚像距离 有着紧密联系。

人的眼睛也是有焦距的,看远和看近的焦距不同,因此如果虚像距离不够远,在看向较远的地方时ARHUD的显示会由于眼睛焦距的原因而虚化。

所以,虚像距离 联系着 人眼的焦距。

如果虚像距离过小,驾驶员需要将视线从路面上移开,重新对焦才能看清HUD上的信息,这实际上违背了HUD的设计初衷。

6.坐标转换的应用

4adc3c74d753833a31040309c37d55eb.png

6.1. 验证虚像投影是否准确

面临问题:虚像投影主要目的是将真实世界坐标投影在虚像中,如果无法做到准确对应,会影响ARHUD准确性。

解决方法:由硬件系统方传入投影参数——虚像距离、视场角、人眼位置、虚像分辨率、虚像角度,计算出投影矩阵,通过该矩阵可进行 虚像坐标 与 车体世界坐标 的转换。

取虚像上几个具有代表性的像素坐标(一般是九个点),转换成车体世界坐标,即可计算出虚像可视范围——最远可见、最近可见、最左可见、最右可见、中心可见。

45e1eb776fe0d7df712a532e8013e176.png

在计算出的可视范围上放置标识物体(车前方),查看该标识物体在虚像中的位置,是否与九个点重合,如果重合则代表投影准确,如果不重合则投影误差较大,需要通知硬件系统方进行调整。

6.2. 解决变道引导线超出虚像显示区

面临问题:AR导航中的变道引导线是贴合真实世界指向相邻应行驶车道的,如果虚像可视范围无法覆盖相邻车道,则会导致变道线超出显示区。

解决方法:根据变道信息(向左变道、向右变道、变到几车道),在虚像上取几个趋势性像素坐标,转换成 车体世界坐标,最终投影出来。因为是在虚像上取的坐标,所以始终不会超出虚像显示区域。

f239724028c2be44bc4c37a0ff6e1cee.png

7.ARHUD 硬件技术

7.1. TFT

即TFT-LCD,其原理是LED发出的光透过液晶单元后将屏幕上的信息投射出去。

优点:该方案是业界最早开发的投影方案,方案成熟,相对成本低。(目前国外供应商能做到2500-3000左右,本土供应商能做到2000左右。随着技术的成熟和相关产业链的发展,成本应该可以进一步做到2000以内)。

缺点:阳光倒灌问题难以解决。亮度不够,在白天显示效果较差。

910483b32cb70c3dfd4a27db0d24ad6c.png


7.2. DLP

即Digital Light Processing的缩写,采用TI的DMD芯片,把影像信号经过数字处理再投射出来。

优点:DMD芯片可确保投影的活动影像色彩艳丽、细腻逼真、自然真实。由于经过数字化处理,可将图像中的缺陷抹去。DMD芯片更小、更易于携带。

缺点:造价更贵(成本在5000元以上)。

DLP可能出现彩虹效应,影像信号在数字处理过程中颜色混合及转换异常。

DLP显示屏由于需要采用TI的DMD芯片,涉及到技术专利,因此只有奔驰和传祺两家车型在用。         

600d3f80e50adc76d18d7d260125c2dc.png

4ba595d155aa033ee7ee16631868d3c0.png

7.3. LCOS

即Liquid Crystal on Silicon的缩写,即液晶附硅,也叫硅基液晶,是一种基于反射模式,尺寸比较小的矩阵液晶显示装置。这种矩阵采用CMOS技术在硅芯片上加工制作而成。目前国内主要是华为跟一数科技采用这种方案。

优点:在整体反射模式下,光利用效率高,画面更加自然。价格可控,CMOS技术由多家厂商掌握,避免DMD芯片只由德州仪器独家垄断的情况。反光层和硅基板电路之间具有一层金属遮光层,可以有效防止阳光倒灌。

缺点:目前整体技术还不太成熟,没有大规模量产,有待进一步发展。HUD可视区域较小,投影光机体积相对较大。

19f639a153f4bea4201c8fd2f5a600a2.png

9d5db2643e0ed69177f8f5d4f452ba56.png

8.ARHUD主要技术难点

  • 市场角小

目前市面上的ARHUD设备FOV过小,影像只能呈现在驾驶者视线范围中的一小部分。

  • 投影亮度

HUD影像的亮度,为了对应不同的外部光线、气候等影响,需要更高的亮度来达到较佳的影像品质与视觉效果。

  • 硬件体积

降低HUD的系统整体体积,现有TFT/DLP等模组本身的限制,加上需求较大的FOV,都会让HUD系统的体积越来越大,与车体的空间分配冲突。

  • 实景贴合

需要通过各种路网数据、传感器数据、GPS信号等,进行实时矫正。确保AR的图形和真实路况匹配。

  • 人眼位置

如何动态监测人眼位置,调整ARHUD投射的画面,使之避免出现画面发虚、错位等问题,比较考验HUD厂商的能力。

结语

ARHUD技术发展至今,已成为驾车导航产业必争之地。可以预期的是,苹果公司的ARHUD在未来也会逐渐向驾车导航靠拢。当然,还有很多技术难点需要攻克,来提升用户体验,真正实现 导航视野内“所见即所得”。值得欣慰的是,在ARHUD技术迅猛发展过程中,见到了很多国内企业努力的身影。希望未来有更多中国技术在ARHUD领域大放异彩!

注:文中部分配图来自网络,如有侵权,请联系我们删除。

关注「高德技术」,了解更多

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/33102.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

React hooks文档笔记(三) 状态

状态 一、如何设计组件状态的步骤二、状态构造原则1. 组相关状态2. 避免矛盾/互斥状态3. 避免多余状态4. 不要把props放进state,除非你特别想要阻止更新 三、状态保存/重置1. 相同位置的相同组件保留状态2. 同一位置不同元素reset状态 一、如何设计组件状态的步骤 …

组装电脑U盘重装Win10系统教程图解

当您需要对组装电脑进行重新安装Win10操作系统时,使用U盘是一种方便而有效的方法,U盘重装系统不仅可以帮助您解决各种系统问题,还能提供一个干净、稳定的系统环境。无论您是初学者还是有一定经验的用户,本教程将提供清晰的组装电脑…

游戏革命2023:AIGC拯救游戏厂商

文明史即工具史,纵观人类社会的演化,每一次的加速迭代,都有赖于关键性的技术突破。 前有蒸汽机到电力普及的生产力大爆发,以及计算机、互联网的诞生打开新世界,如今AIGC将再次推动先进技术工具的变革。 随着ChatGPT的…

观察者模式(二十)

相信自己,请一定要相信自己 上一章简单介绍了迭代器模式(十九), 如果没有看过, 请观看上一章 一. 观察者模式 引用 菜鸟教程里面 观察者模式介绍: https://www.runoob.com/design-pattern/observer-pattern.html 当对象间存在一对多关系时,则使用观察…

CSS之定位

作用:灵活的改变盒子在网页中的位置 实现: 1.定位模式:position 2.边偏移:设置盒子的位置 leftrighttopbottom 相对定位 position: relative 特点: 不脱标,占用自己原来位置显示模式特点保持不变设…

OpenStack(4)--NameSpace实现不同项目(租户)重叠网段

openstack通过namespace将不同项目(租户)的网络隔离,每个项目的管理员都需要对项目网络进行规划建设,这就导致不同项目之间会重复使用到某些网段,例如192.168.X.X就是管理员习惯使用的网段。 上一次我们新建位于vxlan…

【TCP/IP】多进程服务器的实现(进阶) - 多进程服务器模型及代码实现

经过前面的铺垫,我们已经具备实现并发服务器的基础了,接下来让我们尝试将之前的单任务回声服务器改装成多任务并发模式吧! 多任务回声服务器模型 在编写代码前,先让我们大致将多任务(回声)服务器的模型抽象…

通过USB和wifi连接真机编写第一个脚本

目录 一、连接手机 1、通过usb数据线连接手机 2、无线连接手机 二、编写第一个脚本 一、连接手机 1、通过usb数据线连接手机 数据线连接手机并允许调试 cmd命令行执行: adb devices 如果没有显示device信息,请检查: 手机是否开启usb调…

配置了git config --global credential.helper store后,还是弹出输入密码框

使用http协议拉取代码时,每次pull/push都会弹出账号密码框,可以使用git的配置credential.helper来保存每次输入的账号密码到硬盘上,命令git config --global credential.helper store,store表示存到硬盘中,但是按照这样操作后git pull还是弹出密码框,通过git config --list发现…

【雕爷学编程】Arduino动手做(137)---MT8870语音解码

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

云原生之深入解析Dapr安全性之访问控制策略

一、服务调用范围访问策略 ① 跨命名空间的服务调用 Dapr 通过服务调用 API 提供端到端的安全性,能够使用 Dapr 对应用程序进行身份验证并设置端点访问策略: Dapr 应用程序可以被限定在特定的命名空间,以实现部署和安全,当然仍然…

Istio 什么是服务网格

什么是服务网格 服务网格(Service Mesh)这个术语通常用于描述构成这些应用程序的微服务网络以及应用之间的交互。随着规模和复杂性的增长,服务网格越来越难以理解和管理。 它的需求包括服务发现、负载均衡、故障恢复、指标收集和监控以及通常更加复杂的运维需求&am…

oracle字符集

1、查看oracle字符集 如果操作系统或者客户端的字符集设置和数据库设置不一样就会出现乱码 查询NLS_LANG即操作系统环境变量要设为 NLS_LANGUAGE_NLS_TERRITORY**.NLS_CHARACTERSET**,如: export NLS_LANG“AMERICAN_AMERICA.AL32UTF8”

Hadoop环境搭建

一、简介 1.1、概念 Hadoop是一个由Apache基金会所创建的分布式系统基础架构,主要解决海量数据的存储和海量数据的分析计算问题,从广义上来说hadoop是数据存储分包器,可以存储大量的数据。 1.2、优势 Hadoop具有高可靠性(Hado…

electron+vue3+ts+vite

首先使用vite工具创建一个vue3ts的项目 npm create vite创建好vuets项目后启动项目 cd electron-vue3-ts-vitenpm installnpm run dev 访问http://127.0.0.1:5173/地址可以看到项目已经启动成功 安装Electron 接下来我们安装electron,使用以下命令 npm i -D el…

CV什么时候能迎来ChatGPT时刻?

卷友们好,我是rumor。 最近看了几篇CV的工作,肉眼就感受到了CVer们对于大一统模型的“焦虑”。 这份焦虑让他们开始尝试统一一切,比如: 统一复杂的自动驾驶任务的优化目标[1],来自今年CVPR最佳论文。统一典型的CV任务&…

360手机 360手机刷机最高安卓版本参考

360手机 360手机刷机最高安卓版本参考 参考:360手机-360刷机360刷机包twrp、root 360刷机包360手机刷机:360rom.github.io 【360手机(最高)安卓版本】 以下列举为常见360手机机型;其它早期系列,一般为Android4-6左右360手机UI界…

doker安装RabbitMQ以及用java连接

目录 doker安装: RabitMq安装: java链接 doker安装: 参考链接(非常详细): docker安装以及部署_docker bu shuminio_春风与麋鹿的博客-CSDN博客 安装好后开启doker //启动docker服务 systemctl start do…

保偏产品系列丨5款保偏光纤产品简介

保偏光纤应用日益扩大,特别是在干涉型传感器等测量方面,利用保偏光纤的光无源器件起着非常重要的作用,种类也很多。 本文来介绍5款保偏光纤系列产品以及它们的性能,欢迎收藏转发哦! 01、保偏光纤跳线-TLPMPC 保偏光纤跳…

梯度下降法求函数的解

题目 例如 y x^ 5 e^x3x−3,求解y 0的解 问题分析 首先要构造y 0的损失函数,让这个损失函数是凸的,也就是可以有最优解,并且是可到的,比较容易想到的是mse平方误差,我们要让y和0之间绝对误差最小。lo…