预处理详解(#和##运算符、命名约定、#undef​​、命令行定义​、条件编译、头文件的包含​)

目录

一、#和##

1.1#运算符

1.2## 运算符​

二、命名约定​

三、#undef​

四、命令行定义​

五、条件编译​

六、头文件的包含​

4.1 头文件被包含的方式:​

4.1.1 本地文件包含​

Linux环境的标准头文件的路径:​

VS环境的标准头文件的路径:

4.1.2库文件包含​

4.2嵌套文件包含​


一、#和##

1.1#运算符

#运算符​
#运算符将宏的一个参数转换为字符串字面量。它仅允许出现在带参数的宏的替换列表中。​
#运算符所执行的操作可以理解为”字符串化“。​
当我们有一个变量 int a = 10; 的时候,我们想打印出: the value of a is 10 .​
就可以写:

#define PRINT(n)

printf("the value of "#n " is %d", n);

当我们按照下面的方式调用的时候:
 PRINT(a);//当我们把a替换到宏的体内时,就出现了#a,而#a就是转换为"a",时一个字符串​
代码就会被预处理为:

printf("the value of ""a" " is %d", a);

运行代码就能在屏幕上打印:

 the value of a is 10

1.2## 运算符​

## 可以把位于它两边的符号合成一个符号,它允许宏定义从分离的文本片段创建标识符。 ## 被称
为记号粘合
这样的连接必须产生一个合法的标识符。否则其结果就是未定义的。
这里我们想想,写一个函数求2个数的较大值的时候,不同的数据类型就得写不同的函数。​
比如:

int int_max(int x, int y)
{
 return x>y?x:y;
}
float float_max(float x, float y)
{
 return x>yx:y;
}

但是这样写起来太繁琐了,现在我们这样写代码试试:

//宏定义​
#define GENERIC_MAX(type) \
type type##_max(type x, type y)\
{ \
 return (x>y?x:y);\
}\

使用宏,定义不同函数

GENERIC_MAX(int) //替换到宏体内后int##_max 生成了新的符号 int_max做函数名​
GENERIC_MAX(float) //替换到宏体内后float##_max 生成了新的符号 float_max做函数名
int main()
{
 //调用函数​
 int m = int_max(2, 3);
 printf("%d\n", m);
 float fm = float_max(3.5f, 4.5f);
 printf("%f\n", fm);
 return 0;
}

在实际开发过程中##使用的很少,很难取出非常贴切的例子。​

//宏定义​
#define GENERIC_MAX(type) \
type type##_max(type x, type y)\
{\
	return (x>y?x:y);\
}\

GENERIC_MAX(int) //替换到宏体内后int##_max 生成了新的符号 int_max做函数名​
GENERIC_MAX(float) 
int main()
{
	
	//调用函数​
	int m = int_max(2, 3);
	printf("%d\n", m);
	float fm = float_max(3.5f, 4.5f);
	printf("%f\n", fm);
	return 0;
}

二、命名约定​

一般来讲函数的宏的使用语法很相似。所以语言本身没法帮我们区分二者。
那我们平时的一个习惯是:

把宏名全部大写
函数名不要全部大写

但是也有例外: offsetof

三、#undef​

这条指令用于移除一个宏定义。

#undef NAME
//如果现存的一个名字需要被重新定义,那么它的旧名字首先要被移除。​

#define MAX 100

int main()
{
	printf("%d\n", MAX);
#undef MAX   //移除宏定义
	//printf("%d\n", MAX);

#define MAX 1000
	printf("%d\n", MAX);

	return 0;
}

 

四、命令行定义​

许多C 的编译器提供了一种能力,允许在命令行中定义符号。用于启动编译过程。​
例如:当我们根据同一个源文件要编译出一个程序的不同版本的时候,这个特性有点用处。(假定某个程序中声明了一个某个长度的数组,如果机器内存有限,我们需要一个很小的数组,但是另外一个机器内存大些,我们需要一个数组能够大些。)

#include <stdio.h>
int main()
{
     int array [ARRAY_SIZE];
     int i = 0;
     for(i = 0; i< ARRAY_SIZE; i ++)
 {
     array[i] = i;
 }
     for(i = 0; i< ARRAY_SIZE; i ++)
 {
     printf("%d " ,array[i]);
 }
     printf("\n");
     return 0;
}

编译指令: 

//linux 环境演示​
gcc -D ARRAY_SIZE=10 programe.c

在不改变代码的情况下,编译出不同的版本

五、条件编译​

在编译一个程序的时候我们如果要将一条语句(一组语句)编译或者放弃是很方便的。因为我们有条件编译指令。在预处理阶段,如果满足条件执行后续语句,如果不满足,就不执行
比如说:
调试性的代码,删除可惜,保留又碍事,所以我们可以选择性的编译。
 

#include <stdio.h>
#define __DEBUG__
 int main()
 {
     int i = 0;
     int arr[10] = { 0 };
     for (i = 0; i < 10; i++)
     {
         arr[i] = i;
    #ifdef __DEBUG__    //如果__DEBUG__为真就参与编译
         printf("%d\n", arr[i]);//为了观察数组是否赋值成功。 ​
    #endif //__DEBUG__
     }
     return 0;
 }

  int main()
 {
     #if 1==2
         printf("hehe\n");//不参与编译
     #endif
     return 0;
 }

#define M 3
int main()
{
    int a = 3;
    #if M==a//err  a是局部变量,预编译时不参与
        printf("hehe\n");
    #endif
    return 0;
}

  #define M 2
 int main()
 {
     #if M==1
         printf("hehe\n");
     #elif M==2
         printf("haha\n");
     #elif M == 3
         printf("heihei\n");
     #else
         printf("~~~~\n");
     #endif
     return 0;
 }

常见的条件编译指令: 

1.#if 常量表达式
 //...
#endif
//常量表达式由预处理器求值。​
如:
#define __DEBUG__ 1
#if __DEBUG__
 //..
#endif    
//结束条件编译

2.多个分支的条件编译
#if 常量表达式
 //...
#elif 常量表达式
 //...
#else
 //...
#endif

3.判断是否被定义
#if defined(symbol)
#ifdef symbol
#if !defined(symbol)
#ifndef symbol

4.嵌套指令
#if defined(OS_UNIX)
 #ifdef OPTION1
 unix_version_option1();

六、头文件的包含​

4.1 头文件被包含的方式:​

4.1.1 本地文件包含​

#include "filename"

查找策略:先在源文件所在目录下查找,如果该头文件未找到,编译器就像查找库函数头文件一样在标准位置查找头文件。
如果找不到就提示编译错误。

Linux环境的标准头文件的路径:​

/usr/include

VS环境的标准头文件的路径:

C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include
//这是VS2013的默认路径​

注意按照自己的安装路径去找。

4.1.2库文件包含​

#include <filename.h>

查找头文件直接去标准路径下去查找,如果找不到就提示编译错误。
这样是不是可以说,对于库文件也可以使用 “” 的形式包含?
答案是肯定的,可以,但是这样做查找的效率就低些,当然这样也不容易区分是库文件还是本地文件了。

4.2嵌套文件包含​

我们已经知道, #include 指令可以使另外一个文件被编译。就像它实际出现于 #include 指令的
地方一样。
这种替换的方式很简单:预处理器先删除这条指令,并用包含文件的内容替换。
一个头文件被包含10次,那就实际被编译10次,如果重复包含,对编译的压力就比较大。

如果直接这样写,test.c文件中将test.h包含5次,那么test.h文件的内容将会被拷贝5份在test.c中。​
如果test.h 文件比较大,这样预处理后代码量会剧增。如果工程比较大,有公共使用的头文件,被大家都能使用,又不做任何的处理,那么后果真的不堪设想。
如何解决头文件被重复引入的问题?答案:条件编译。
每个头文件的开头写:

#ifndef __TEST_H__
#define __TEST_H__
//头文件的内容​
#endif //__TEST_H__

或者

#pragma once

就可以避免头文件的重复引入。

笔试题:
1. 头文件中的 ifndef/define/endif是干什么用的?​

答:用于防止头文件的内容在同一个编译单元中被多次包含。
2. #include <filename.h> 和 #include "filename.h"有什么区别? ​

答:#include <filename.h>:这是用于包含系统提供的头文件的常用格式。编译器通常会在其预定义的系统头文件目录中查找这样的文件。

#include "filename.h":这是用于包含用户定义的头文件或项目特定的头文件的常用格式。编译器首先在当前文件或指定的用户目录中查找这样的文件,如果找不到,它可能会回退到系统目录。

    

其他预处理指令​

#error
#pragma
#line
...
不做介绍,自己去了解。
#pragma pack()在结构体部分介绍。

祝大家新年快乐!!!

 

看到这里了还不给博主扣个:
⛳️ 点赞☀️收藏 ⭐️ 关注!

你们的点赞就是博主更新最大的动力!
有问题可以评论或者私信呢秒回哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330853.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HelloWorld(java)

1.切换盘符&#xff1a;找到刚刚书写的代码 2.编译&#xff1a;javac是JDK提供的编译工具&#xff0c;通过这个工具&#xff0c;把当前路径下下的HelloWorld.java文件编译成class文件 3.运行&#xff1a;java也是JDK提供的一个工具&#xff0c;作用就是用来运行代码&#xff…

【漏洞复现】银达汇智智慧综合管理平台任意文件读取漏洞

Nx01 产品简介 福建银达汇智信息科技股份有限公司成立于2009年&#xff0c;位于福建省福州市&#xff0c;是一家以从事软件和信息技术服务业为主的企业。 Nx02 漏洞描述 银达汇智智慧综合管理平台 FileDownLoad.aspx 存在任意文件读取漏洞&#xff0c;通过漏洞攻击者可下载服务…

项目管理十大知识领域之成本管理

1. 项目成本管理的意义和重要性 项目成本管理是项目管理中至关重要的一部分&#xff0c;它直接关系到项目最终成本和利润的控制&#xff0c;对于企业的可持续发展具有重要意义。通过合理的成本管理&#xff0c;项目能够更好地控制预算&#xff0c;提高效率&#xff0c;降低成本…

计算机系统基础知识一、数值的源码、反码、补码、移码

目录 一、原码、反码、补码定义 1、原码表示 2、反码表示 3、补码表示 二、算数运算 1、二进制算数运算规则 2、机器数的加减运算 三、移码定义 四、移码的意义 概要 在计算机基础中&#xff0c;原码、反码、补码和移码是用于表示和处理有符号整数的编码方式。它们…

5大自动化测试的Python框架,快来学习!

自从2018年被评选为编程语言以来&#xff0c;Python在各大排行榜上一直都是名列前茅。 目前&#xff0c;它在Tiobe指数中排名第三个&#xff0c;仅次于Java和C。随着该编程语言的广泛使用&#xff0c;基于Python的自动化测试框架也应运而生&#xff0c;且不断发展与丰富。 因…

MATLAB解决考研数学一题型(上)

闲来无事&#xff0c;情感问题和考研结束后的戒断反应比较严重&#xff0c;最近没有什么写博文的动力&#xff0c;抽空来整理一下考研初试前一直想做的工作——整理一下MATLAB解决数学一各题型的命令~ 本贴的目录遵循同济版的高数目录~ 目录 一.函数与极限 1.计算双侧极限 2…

鸿蒙开发-UI-布局-弹性布局

地方 鸿蒙开发-UI-布局 鸿蒙开发-UI-布局-线性布局 鸿蒙开发-UI-布局-层叠布局 文章目录 前言 一、基本概念 二、布局方向 1、主轴为水平方向 2、主轴为垂直方向 三、布局换行 四、对齐方式 1、主轴对齐方式 2、交叉轴对齐方式 2.1、容器组件设置交叉轴对齐 2.2、子组件设置交叉…

安装脚手架Vue CLI详解!!!

Vue CLI基本介绍&#xff1a; Vue CLI是Vue官方提供的一个全局命令工具。可以帮助我们快速创建一个开发Vue项目的标准化基础架子【集成了webpack配置】 安装脚手架好处&#xff1a; 开箱即用&#xff0c;零配置&#xff1b;内置babel等工具&#xff1b;标准化 安装步骤&#…

javaScript设计模式-工厂

它的好处是消除对象间的耦合度&#xff0c;在派生子类时提供了更大的灵活性。但盲目的把普通的构造函数扔在一边&#xff0c;并不值得提倡。如果要采一不可能另外换用一个类&#xff0c;或都不需要在运行期间在一系列可互换的类中进行选择&#xff0c;就不应该使用。这样在后期…

虚拟环境中pip install不生效的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

全网首发 2024华数杯B题成品论文word52页(附带所有可执行代码+和高质量数据)

基于数据分析下的光伏发电 摘 要&#xff08;文末获取&#xff09; 根据最新数据&#xff0c;中国的总发电量超过20万亿千瓦时&#xff0c;总体排名世界第一&#xff0c;而光伏发电是一种重要的可再生能源&#xff0c;可以将太阳能转化为电能可以减少对传统能源的依赖&#x…

本地运行LlaMA 2的简易指南

大家好&#xff0c;像LLaMA 2这样的新开源模型已经变得相当先进&#xff0c;并且可以免费使用。可以在商业上使用它们&#xff0c;也可以根据自己的数据进行微调&#xff0c;以开发专业版本。凭借其易用性&#xff0c;现在可以在自己的设备上本地运行它们。 本文将介绍如何下载…

Python 语言零基础入门,需要做哪些准备?

Python 语言零基础入门&#xff0c;需要做哪些准备&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「Python的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&…

专题页设计不再困扰,3个实例揭示简单技巧!

特别页面是电子商务领域设计的重要组成部分。销售能否取决于这里的活动运营水平。除了每年固定的节假日外&#xff0c;电子商务平台还会在季节变化、开学季节等时间点举办大型促销活动&#xff0c;有时还会自己制作节日。这些活动都涉及到特别页面的设计。在这篇文章中&#xf…

pyrender复现pytorch3d渲染结果

pyrender复现pytorch3d渲染结果 一、写在前面1.1 pyrender渲染时间 ≈ 0.02s1.2 Pytorch3D渲染时间 ≈ 4s 二、pytorch3d的渲染函数2.1 PyTorch3D 库创建了一个颜色渲染器&#xff08;color_renderer&#xff09;对象&#xff0c;并配置了相机、光照和渲染设置。2.2 PyTorch3D …

旅游项目day03

1. 前端整合后端发短信接口 2. 注册功能 后端提供注册接口&#xff0c;接受前端传入的参数&#xff0c;创建新的用户对象&#xff0c;保存到数据库。 接口设计&#xff1a; 实现步骤&#xff1a; 手机号码唯一性校验&#xff08;后端一定要再次校验手机号唯一性&#xff09…

【图形学】颜色线性插值和Wu反走样算法

颜色线性插值 绘制一条颜色渐变的直线&#xff0c;直线上每一个点的颜色都来自端点颜色的线性插值。线性插值公式为 P ( 1 − t ) P s t a r t t P e n d P 是直线上任意一个点&#xff0c; P s t a r t 是直线的起点&#xff0c; P e n d 是直线的终点 对应直线上任意一点…

gin+gorm增删改查目录框架

从网上找资料,发现,很多都是直接的结构 路由&#xff0c;后端的controller层&#xff0c;还有model层&#xff0c;都是放在了同一个main.go文件中&#xff0c;如果写项目的话&#xff0c;还得自己去拆文件&#xff0c;拆代码&#xff0c;经过查询和自己总结&#xff0c;下面放…

计算机网络——数据链路层(1)

一、概述 在计算机网络中&#xff0c;数据链路层承担着点对点通信的任务&#xff0c;用于跨物理层在网段节点之间参数数据。它在网络分层中处于物理层之上&#xff0c;网路层之下。 在链路层的讨论中&#xff0c;我们将看到两种截然不同类型的链路层信道。第一种类型是广播信道…

数字身份所有权:Web3时代用户数据的掌控权

随着Web3时代的来临&#xff0c;数字身份的概念正焕发出崭新的光芒。在这个数字化的时代&#xff0c;用户的个人数据变得愈加珍贵&#xff0c;而Web3则为用户带来了数字身份所有权的概念&#xff0c;重新定义了用户与个人数据之间的关系。本文将深入探讨Web3时代用户数据的掌控…