嵌入式-Stm32-江科大基于标准库的GPIO的八种模式

文章目录

    • 一:GPIO输入输出原理
    • 二:GPIO基本结构
    • 三:GPIO位结构
    • 四:GPIO的八种模式
      • 道友:相信别人,更要一百倍地相信自己。

(推荐先看文章:《 嵌入式-32单片机-GPIO推挽输出和开漏输出》)
下文图都是从参考手册借阅:STM32F10xxx(中文),大概页数是110/775左右

一:GPIO输入输出原理

GPIO(General Purpose Input Output)通用输入输出口
可配置为8种输入输出模式
引脚电平:0V~3.3V,部分引脚可容忍5V(有FT标识)
输出模式下可控制端口输出高低电平,用以驱动LED、控制蜂鸣器、模拟通信协议输出时序等
输入模式下可读取端口的高低电平或电压,用于读取按键输入、外接模块电平信号输入、ADC电压采集、模拟通信协议接收数据等

二:GPIO基本结构

GPIO的基本结构图

  • 上图是GPIO的基本结构图。在Stm32中,所有的GPIO都挂载在APB2外设总线上。每个GPIO模块内,包括有寄存器、驱动器、引脚等 寄存器就是一段特殊的存储器,内核可以通过APB2总线对寄存器进行读写,从而完成输出电平和读取电平的功能。该寄存器的每一位都对应一个引脚,由于STM32是32位的单片机,所以所有的寄存器都是32位的,也就是说只有寄存器的低16位对应上了相应的GPIO口(好多时候高16位置0,低16位才真正控制寄存器)

  • 驱动器就是增加信号的驱动能力的。

注意:stm32F103c8t6芯片上48个引脚,除了基本的电源和晶振等维持系统外,分别包括PA0~PA15、PB0-PB15、PC0 ~PC15。

三:GPIO位结构

GPIO位结构
上图分为输入部分和输出部分,看虚线框

输入部分:

  • 整个框架从左往右依次是寄存器、驱动器、IO引脚,从上到下分为“输入”、“输出”。
  • 最右侧的IO引脚上两个保护二极管,其作用是对IO引脚的输出电压进行限幅在0~3.3V之间,进而可以避免过高的IO引脚输入电压对电路内部造成伤害。Vdd = 3.3V,Vss = 0V。
  • 过压保护:当I引脚输入10V时,电压从输入引脚到保护二极管再到Vdd,有电压差就能流通,这叫过压保护。
  • 低压保护:当I引脚输入低于0V时,这叫做负电压,此时,电流流向为:从Vss →I引脚,这叫低压保护。
  • 输入驱动器的上、下拉电阻(图中像弹簧那两根):相应的开关可以通过程序进行配置,分别有上拉输入模式(上开关导通,下开关断开)、下拉输入模式(下开关导通&上开关断开)、浮空输入模式(两个开关都断开)。
    下拉电阻的作用几时给引脚输入提供一个默认的输入电平,进而避免引脚悬空导致的不确定。都属于弱上拉,弱下拉。

  • 输入驱动器的触发器:这里是用肖特基管构成的施密特触发器。只有高于上限、低于下限电压才进行变化,作用是对输入电压进行整形,可以消除电压波纹、使电压的上升沿/下降沿更加陡峭。也就是说,stm32的GPIO的端口会自动对输入的数字电压进行整形。比如像那种方波在变化的那个瞬间进行消抖,20ms.

  • “模拟输入”、“复用功能输入”:都是连接到片上外设的一些端口,前者用于ADC等需要模拟输入的外设,后者用于串口输入引脚等需要数字量的外设。

输出部分:

  • 输出数据:可以由输出数据寄存器(普通的IO口输出)、片上外设来指定,数据选择器控制数据来源。
  • 位设置/清除寄存器:单独操作输出数据的某一位,而不影响其他位。
  • 驱动器中的MOS管:MOS管相当于一种开关,输出信号来控制这两个MOS管的开启状态,进而输出信号。可以选择推挽、开漏、关闭三种输出方式(推荐先看文章:《嵌入式-32单片机-GPIO推挽输出和开漏输出》),P-MOS相当于Q1,N-MOS相当于Q2
  • 推挽输出模式:两个MOS管均有效,stm32对IO口有绝对的控制权,也称为强推输出模式。
  • 开漏输出模式:P-MOS无效。只有低电平有驱动能力,高电平输出高阻。
  • 关闭模式:两个MOS管均无效,端口电平由外部信号控制。

补充说明:stm32如何将数据写入寄存器?

  • 通过软件的方式。由于stm32的寄存器只能进行整体读写,所以可以先将数据全部读出,然后代码中用&= 清零、|= 置位的方式改变单独某一位的数据,再将该写后的数据写回寄存器。此方法比较麻烦,效率不高,对于IO口进行操作不合适(这就是基于寄存器开发的麻烦之处,所以有了基于标准库的开发)

  • 通过位设置/清除寄存器。若对某一位 置1,只需对位设置寄存器的相应位值1;若对某一位 清零,则对清除寄存器相应位 清零。这种方式通过内置电路完成操作,一步到位。

  • 通过读写stm32中的“位带”区域。在stm32中,专门分配有一段地址区域,该区域映射了RAM和外设寄存器所有的位。读写这段地址中的数据,就相当于读写所映射位置的某一位。整体流程与51单片机中的位寻址作用差不多。本教程不涉及。

四:GPIO的八种模式

模式名称性质特征
浮空输入数字输入可读取引脚电平,若引脚悬空则电平不确定,容易受外界影响所以需要连续驱动源
上拉输入数字输入可读取引脚电平,内部连接上拉电阻,悬空时默认高电平
下拉输入数字输入可读取引脚电平,内部连接下拉电阻,悬空时默认低电平
模拟输入模拟输入GPIO无效,会关闭数字输入开启模拟输入,引脚直接接入内部ADC(ADC专属配置)
开漏输出数字输出可输出引脚电平,高电平为高阻态,低电平接Vss
推挽输出数字输出可输出引脚电平,高电平接VDD,低电平接Vss
复用开漏输出数字输出由片上外设控制,高电平为高阻态,低电平接Vss
复用推挽输出数字输出由片上外设控制,高电平接VDD,低电平接Vss

上表给出了GPIO的八种模式,通过配置GPIO的端口配置寄存器即可选择相应的模式。

  1. 每一个端口的模式由四位进行控制,16个端口就需要64位,所以这里的配置寄存器有两个(一个是端口低配置寄存器,一个是端口配置高寄存器),也就是两个32位寄存器,即端口配置低寄存器、端口配置高寄存器。
  2. 输入模式下,输出无效;而输出模式下,输入有效。这是因为一个端口只能有一个输出,但可以有多个输入,所以直接将输出信号输入回去也没问题。
    3.端口配置低寄存器低16位对应16个引脚,高16位没有使用;端口配置高寄存器,同样是低16位对应16个引脚,高16位没有使用。

在这里插入图片描述

端口位设置/清除寄存器的高16位进行位清除的,低16位是进行位设置的

寄存器:暂时记录数据的模块。

复用开漏/推挽输出:引脚的控制权转移到了片上外设
stm32串口默认是半双工的。

三极管可看成两个二极管构成(背靠背)

参考:B站STM32江协自动化&【哈工大虎慕】

道友:相信别人,更要一百倍地相信自己。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330276.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

宏集干货丨探索物联网HMI的端口转发和NAT功能

来源:宏集科技 工业物联网 宏集干货丨探索物联网HMI的端口转发和NAT功能 原文链接:https://mp.weixin.qq.com/s/zF2OqkiGnIME6sov55cGTQ 欢迎关注虹科,为您提供最新资讯! #工业自动化 #工业物联网 #HMI 前 言 端口转发和NAT功…

Qt纯代码实现UI界面

1.相关信息 设置编辑框内容的字体样式&#xff0c;包括加粗、下划线、斜体、蓝色、红色、黑色 2.界面展示 3.相关代码 #include "dialog.h" #include <QHBoxLayout> #include <QVBoxLayout> #include <QCheckBox> #include <QRadioButton> …

【软件测试学习笔记6】Linux常用命令

格式 command [-options] [parameter] command 表示的是命令的名称 []表示是可选的&#xff0c;可有可无 [-options]&#xff1a;表示的是命令的选项&#xff0c;可有一个或多个&#xff0c;也可以没有 [parameter]&#xff1a;表示命令的参数&#xff0c;可以有一个或多…

清晰光谱空间:全自动可调波长系统的高光谱成像优势

高光谱成像技术 高光谱成像技术是一种捕获和分析宽波长信息的技术&#xff0c;能够对材料和特征进行详细的光谱分析和识别。高光谱成像技术的实现通过高光谱相机&#xff0c;其工作原理是使用多个光学传感器或光学滤波器分离不同波长的光&#xff0c;并捕获每个波段的图像&…

前端:布局(用于div中有多行元素,一行只显示四个,最左或最右要紧贴父div,最顶层和最底层也要紧贴父div)

效果 一、flex实现 html <!DOCTYPE html> <html><head><title>Flexbox Layout</title><style>.container {display: flex;flex-wrap: wrap;justify-content: space-between;gap: 10px;border: 1px solid red;}.box {flex: 1 0 calc(25% …

rsync全面讲解

rsync 是一个常用的 Linux 应用程序&#xff0c;用于文件同步。 它可以在本地计算机与远程计算机之间&#xff0c;或者两个本地目录之间同步文件&#xff08;但不支持两台远程计算机之间的同步&#xff09;。它也可以当作文件复制工具&#xff0c;替代cp和mv命令。 它名称里面…

逆向使用webpack打包的网站

webpack webpack 是 JavaScript 应用程序的模块打包器,可以把开发中的所有资源&#xff08;图片、js文件、css文件等&#xff09;都看成模块&#xff0c;通过loader&#xff08;加载器&#xff09;和 plugins &#xff08;插件&#xff09;对资源进行处理&#xff0c;打包成符…

JRTP实时音视频传输(2)-使用TCP通信的案例

1.创建自己的demo 先将example1拷贝为myclienttcp.cpp和myservertcp.cpp cp example1.cpp myclienttcp.cpp cp example1.cpp myservertcp.cpp 改写jrtplib/JRTPLIB/examples/CMakeLists.txt&#xff0c;添加myclienttcp和myservertcp编译 重新生成Makefile并编译 sudo cmak…

plc红绿灯程序

引言&#xff1a; PLC&#xff08;Programmable Logic Controller&#xff0c;可编程逻辑控制器&#xff09;是一种用于工业自动化控制的电子设备。西门子的SIMATIC S7-200是这类设备的一个流行系列&#xff0c;广泛应用于小型至中等规模的自动化项目中。它具有以下特点&#…

pytorch学习(一)线性模型

文章目录 线性模型 pytorch是一个基础的python的科学计算库&#xff0c;它有以下特点&#xff1a; 类似于numpy&#xff0c;但是它可以使用GPU可以用它来定义深度学习模型&#xff0c;可以灵活的进行深度学习模型的训练和使用 线性模型 线性模型的基本形式为&#xff1a; f ( x…

推荐一款性价比高的USB 协议分析仪

最近在入门学习USB 协议&#xff0c;USB 协议是出了名的晦涩难懂&#xff0c;调试过程中如果没有合适的工具帮助分析&#xff0c;就像电工没有电表笔一样&#xff0c;难以诊断各种奇难杂症。 于是网上找了一下USB 协议分析仪&#xff0c;一看价格超过3位数的就不考虑了&#x…

Java关键字static和final

一、final关键字是什么&#xff1f; 1、final可以用来修饰的结构&#xff1a;类、方法、变量 2、final用来修饰一个类&#xff1a;此类不能被其它类继承。当我们需要让一个类永远不被继承&#xff0c;此时就可以用final修饰&#xff0c;但要注意&#xff1a;final类中所有的成…

ArcGIS Pro 如何新建布局

你是否已经习惯了在ArcGIS中数据视图和布局视图之间来回切换&#xff0c;到了ArcGIS Pro中却找不到二者之间切换的按钮&#xff0c;即使新建布局后却发现地图怎么却是一片空白。 这一切的一切都是因为ArcGIS Pro的功能框架完全不同&#xff0c;这里为大家介绍一下在ArcGIS Pro…

微信小程序(五)下拉刷新

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1. 下拉刷新 2. 下拉页面背景颜色 3. 设置是否可滚动 4. 设置导航栏模式 源码&#xff1a;(实际上不能加注释但这里为了方便解释就加上了) index.json {//默认模式&#xff0c;另一种自定义模式是custom//自定义…

课表排课小程序怎么制作?多少钱?

在当今的数字化时代&#xff0c;无论是购物、支付、点餐&#xff0c;还是工作、学习&#xff0c;都离不开各种各样的微信小程序。其中&#xff0c;课表排课小程序就是许多教育机构和学校必不可少的工具。那么课表排课小程序怎么制作呢&#xff1f;又需要多少钱呢&#xff1f; …

RK3399平台入门到精通系列讲解(USB篇)UDC 层 usb_gadget_probe_driver 接口分析

🚀返回总目录 文章目录 一、UDC:usb_gadget_probe_driver函数分析二、usb_gadget_driver 结构详细介绍三、usb_udc 结构详细介绍一、UDC:usb_gadget_probe_driver函数分析 UDC层的一项基本任务是向上层提供usb_gadget_probe_driver()接口函数。 上层调用者为composite.c中…

坚持刷题 | 二叉树的层序遍历

坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;今天刷&#xff1a;二叉树的层序遍历 题目 102二叉树的层序遍历 考察点 数据结构基础&#xff1a; 能够正确地使用二叉树数据结构&#xff0c;并了解二叉树的基本性质。编程基础&#xff1a; 能够熟练使用Java编程语言&a…

【linux】Debian10.0配置vsftpd

一、基本步骤 在 Debian 10 (Buster) 上要配置 vsftpd (Very Secure FTP Daemon)&#xff0c;请按照以下步骤操作&#xff1a; 1. 安装 vsftpd: sudo apt update sudo apt install vsftpd 2. 在启动配置之前&#xff0c;建议备份原始的配置文件: sudo cp /etc/vsftpd.con…

2024美赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--具身智能、强化学习

专属领域论文订阅 VX关注 晓理紫&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 分类: 大语言模型LLM视觉模型VLM扩散模型视觉导航具身智能&#xff0c;机器人强化学习开放词汇&#xff0c;检测分割 [晓理紫]每日论文分享…