【机器学习】机器学习四大类第01课

一、机器学习四大类

在这里插入图片描述

有监督学习 (Supervised Learning)

有监督学习是通过已知的输入-输出对(即标记过的训练数据)来学习函数关系的过程。在训练阶段,模型会根据这些示例调整参数以尽可能准确地预测新的、未见过的数据点的输出。 实例:垃圾邮件分类器。训练数据集包含一系列电子邮件及其对应的标签(垃圾邮件或非垃圾邮件)。通过学习这些特征与标签之间的关联,模型可以用于识别新的邮件是否为垃圾邮件。

无监督学习 (Unsupervised Learning)

在无监督学习中,没有给定特定的输出标签,算法需要自己发现数据中的内在结构、模式或集群。它的目标通常是将数据进行分组或降维,以便更好地理解数据分布。 实例:客户细分。假设我们有一组客户的行为数据(如购买历史、访问频率等),但没有明确的类别标签。使用聚类算法(例如K-means)可以将相似行为模式的客户自动划分为不同的群体。
半监督学习 (Semi-supervised Learning)

半监督学习

介于有监督学习和无监督学习之间,它利用一部分带有标签的数据和大量未标记的数据进行学习。通常在标注数据有限的情况下,这种学习方式可以帮助提高模型性能。 实例:图像分类。如果只有部分图像被人工标注了类别,而剩余大部分图像没有标签,模型可以通过分析图像间的相似性,在已知标签图像的帮助下,推断出未标记图像的类别。
强化学习 (Reinforcement Learning, RL)

强化学习

是一种序列决策过程的学习方法,智能体通过与环境交互获得奖励或惩罚,并根据这些反馈调整其策略以最大化长期累积奖励。 实例:AlphaGo(围棋AI)。AlphaGo在每次走棋时都会得到一个即时的奖励信号(赢棋或输棋的最终结果,以及过程中每一步棋的相对价值估计),通过不断对弈学习最优策略,逐步提高棋艺水平。

二、具体解释以上四种学习

在这里插入图片描述

细节概念:

输入 (Input): 输入是指模型接收到的数据或信息。这些数据通常以**特征【属性与特征区别:属性可以理解为路程,特征可以理解为路程是1公里,特征有具体值。】**的形式呈现,可以帮助模型理解和分析问题。例如,在房价预测的任务中,输入可能包括房屋的面积、卧室数量、地理位置、建成年份等特征。

实例:设想一个简单的水果识别系统,这里的输入可能是一张包含水果的图片。这张图片会被转换为像素值等数字特征,作为模型判断“这是什么水果”的依据。

输出 (Output): 输出是模型根据输入数据经过处理后得出的结果。对于分类任务,输出是一个类别标签;回归任务则是一个连续数值;而强化学习中输出可能是采取某个动作的决策。

实例:

继续上面的水果识别系统例子,模型的输出将是识别出的水果种类,如苹果、香蕉或橙子。
在房价预测模型中,输出将是基于输入特征预测出的该房屋的价格(一个具体的数值)。
对于强化学习中的AlphaGo,每一步棋的输出则是它决定走的下一步棋的位置(即策略选择)。

整体细分

  1. 垃圾邮件分类器(有监督学习)

输入:模型接收到的是一封电子邮件的内容,包括邮件主题、正文、发件人信息等特征,这些特征被转化为数值向量表示。
处理过程:模型使用如逻辑回归、朴素贝叶斯、支持向量机或深度学习等算法,通过学习训练集中已标记为“垃圾邮件”或“非垃圾邮件”的邮件样本特征与标签之间的关联规律。
输出:模型预测给定新邮件是否为垃圾邮件,输出结果是一个概率值或者类别标签。例如,输出0.95可能意味着模型判断该邮件是垃圾邮件的概率为95%,而输出“垃圾邮件”则直接指明了邮件类型。

  1. 客户细分(无监督学习)

输入:模型接收一组客户的多维度数据,比如消费记录、浏览行为、购买频率、产品偏好等特征。
处理过程:应用聚类算法(如K-means或层次聚类),将相似特征的客户归入同一簇中,算法根据数据内在结构和模式自动划分集群,无需事先知道客户的具体类别。
输出:模型最终生成多个客户群体,并为每个客户提供一个所属的簇标识。例如,输出可能是客户A属于“高价值潜在用户”簇,客户B属于“频繁购物者”簇。

  1. 图像分类(半监督学习)

输入:一部分图像具有人工标注的类别标签,其余大部分图像没有标签。每张图片都转换为像素强度构成的数字矩阵作为特征。
处理过程:模型首先利用有限的带标签数据进行初步训练,然后在大量未标记的数据上运用自训练、迁移学习或生成对抗网络等方法来进一步提升模型性能。
输出:对于新的未知类别图像,模型能够预测出其所属类别。例如,输出一张未知猫狗照片的类别为“猫”。

  1. AlphaGo(强化学习)

输入:在每一轮游戏过程中,AlphaGo的输入是当前围棋棋盘的状态,即黑子白子的位置分布。
处理过程:AlphaGo基于深度神经网络(策略网络和价值网络)计算出各种可能下法的得分和局面评估值,并通过蒙特卡洛树搜索结合这两个网络的结果,确定最优走法。
输出:在每一步决策时,模型会输出它认为最佳的下一步落子位置,从而采取行动。随着游戏的进行,不断学习并优化策略以最大化最终获胜的可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/329954.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 vsCode创建GO项目

最近回顾了一下go的使用:具体操作看下面的参考连接,下面只描述一些踩过的坑: 1. go安装配置 安装go->配置go环境变量 推荐官网下载,速度很快; 这里需要配置五个参数:GOPATH/GOROOT/Path、GO111MODULE/…

护眼台灯有AAA级吗?国家AA级护眼灯推荐

在当今这个时代,人们对于知识的需求越来越大。因此,很多的孩子在学业上也是非常的繁忙的,晚上做作业也成为了很多学生的“家常便饭”了,台灯已然成为了很多孩子在夜晚学习的“伙伴”。 然而,很多的家长对于孩子在台灯…

Kali在Vmware无法连接到网络,配置网络及解决办法

一.问题描述: 打开 Kali,无法连接到网络,虚拟机配置正常的。 尝试 ping 百度,出错: ping baidu.com 提示: ping: baidu.com: Temporary failure in name resolution二.解决办法: 1.首先在vmwa…

综述:自动驾驶中的 4D 毫米波雷达

论文链接:《4D Millimeter-Wave Radar in Autonomous Driving: A Survey》 摘要 4D 毫米波 (mmWave) 雷达能够测量目标的距离、方位角、仰角和速度,引起了自动驾驶领域的极大兴趣。这归因于其在极端环境下的稳健性以及出色的速度和高度测量能力。 然而…

开源的Immich自建一个堪比 iCloud 的私有云相册和备份服务

最终效果展示 图片 视频 源码地址 GitHub - immich-app/immich: Self-hosted photo and video backup solution directly from your mobile phone. 1.创建目录 mkdir /data/immich && cd /data/immich 2.下载docker-compose文件和.env文件 wget https://github.c…

TensorRT部署-Windows环境配置

系列文章目录 文章目录 系列文章目录前言一、安装Visual Studio (2019)二、下载和安装nvidia显卡驱动三、下载CUDA四、下载安装cuDNN五、安装Anaconda六、TensorRT安装七、安装Opencv八、Cmake 配置总结 前言 TensorRT部署-Windows环境配置 一、安装Vis…

SDCMS靶场通过

考察核心:MIME类型检测文件内容敏感语句检测 这个挺搞的,一开始一直以为检查文件后缀名的,每次上传都失败,上传的多了才发现某些后缀名改成php也可通过,png图片文件只把后缀名改成php也可以通过,之前不成功…

新版网易全套识别验证

认真往下看,保证这篇文章B格拉满!!!! 距离上次版本更新已经过去好久了,当时只做了滑块,后面朱哥发了一套网易完整版的给我,完事儿也没来得及去看就更新了。 先盘点一下这次更新都做了…

Docker本地私有仓库搭建配置指导

一、说明 因内网主机需要拉取镜像进行Docker应用,因此需要一台带外主机作为内网私有仓库来提供内外其他docker业务主机使用。参考架构如下: 相关资源:加密、Distribution registry、Create and Configure Docker Registry、Registry部署、D…

LabVIEW图像识别检测机械零件故障

项目背景: 在工业生产中,零件尺寸的准确检测对保证产品质量至关重要。传统的人工测量方法不仅耗时费力,精度低,还容易导致零件的接触磨损。为了解决这些问题,开发了一套基于LabVIEW和机器视觉的机械零件检测系统。该系…

UML-活动图

提示:大家可以参考我的状态图博客 UML-活动图 一、活动图的基本概念1.开始状态和结束状态2.动作状态和活动状态(活动)3.分支与合并4.分叉与合并5.活动转换(1)转移(2)判定 6.泳道 二、活动图的例…

Django REST Framework入门之序列化器

文章目录 一、概述二、安装三、序列化与反序列化介绍四、之前常用三种序列化方式jsonDjango内置Serializers模块Django内置JsonResponse模块 五、DRF序列化器序列化器工作流程序列化(读数据)反序列化(写数据) 序列化器常用方法与属…

flink 最后一个窗口一直没有新数据,窗口不关闭问题

flink 最后一个窗口一直没有新数据&#xff0c;窗口不关闭问题 自定义实现 WatermarkStrategy接口 自定义实现 WatermarkStrategy接口 代码&#xff1a; public static class WatermarkDemoFunction implements WatermarkStrategy<JSONObject>{private Tuple2<Long,B…

oracle篇—19c新特性自动索引介绍

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…

【python】学习笔记01

一、基础语法 1. 字面量 - 什么是字面量&#xff1f; 在代码中&#xff0c;被写下来的的固定的值&#xff0c;称之为字面量。 - 常用的值类型 Python中常用的有6种值&#xff08;数据&#xff09;的类型。 666 13.14 "程序员"print(666) print(13.14) print(&qu…

前端面试题-html5新增特性有哪些

HTML html5新增特性有哪些 1.新增了语义化标签 标签用法header定义文档或区块的页眉&#xff0c;通常包含标题&#xff0c;导航和其他有关信息nav定义导航链接的容器&#xff0c;用于包裹网站的导航部分section定义文档的一个独立节或区块&#xff0c;用于组织相关的内容art…

前端框架前置学习Webpack(1) 常用webpack配置

什么是Webpack? 定义 本质上,Webpack是用于现代JavaScript应用程序的静态模块打包工具.当webpack处理应用程序时,它会在内部从一个或多个入口点构建一个依赖图(dependency graph),然后将你项目中所需的每一个模块组合成一个或多个bundles,它们均为静态资源,用于展示你的内容.…

web开发学习笔记(6.element ui)

1.安装 2.在app.vue中引入ElementView中的内容 3.表格控件&#xff0c;当页大小发生变化&#xff0c;当当前页发生变化 4.对话框组件 5.将form表单中的数据打印出来 6.当遇到日期选择器得到的数据为昨日时&#xff0c;应该加入 value-format"yyyy-MM-dd"即可避免这个…

子类的构造函数和析构函数调用顺序

看代码&#xff1a; class A { public:A() { cout << __FUNCTION__ << endl; }~A() { cout << __FUNCTION__ << endl; } };class B { public:B() { cout << __FUNCTION__ << endl; }~B() { cout << __FUNCTION__ << endl; …

vue 指定区域可拖拽的限定拖拽区域的div(如仅弹窗标题可拖拽的弹窗)

<template><div class"container" ref"container"><div class"drag-box" v-drag><div class"win_head">弹窗标题</div><div class"win_content">弹窗内容</div></div><…