助力工业焊缝质量检测,YOLOv3开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统

焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:

《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》

《基于DeepLabV3Plus实现焊缝分割识别系统》

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》

《探索工业智能检测,基于轻量级YOLOv8开发构建焊接缺陷检测识别系统》

《探索工业智能检测,基于轻量级YOLOv5s开发构建焊接缺陷检测识别系统》

《助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统》

感兴趣的话可以自行移步阅读。

本文的主要目的是想要以焊缝场景为切入点,基于YOLOv3模型来开发构建工业焊缝场景下焊缝质量检测识别系统,首先看下实例效果:

接下来简单看下数据集情况:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

本文选择的是yolov3-tiny模型,训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 2

 
# class names
names: ['bad', 'good']

模型配置文件如下:

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,14, 23,27, 37,58]  # P4/16
  - [81,82, 135,169, 344,319]  # P5/32

# YOLOv3-tiny backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [16, 3, 1]],  # 0
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
   [-1, 1, Conv, [32, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]],  # 11
   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
  ]

# YOLOv3-tiny head
head:
  [[-1, 1, Conv, [1024, 3, 1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)

   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)

   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
  ]

主要包括:差和好两个类别的目标。

默认100次epoch的迭代计算,终端日志输出如下所示:

等待训练完成后来整体看下结果详情:

【数据分布可视化】

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

感兴趣的话也都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv3-tiny

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/328962.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理-程序中断方式完整流程

文章目录 程序中断方式完整流程例题小结 程序中断方式完整流程 首先CPU通过执行IO指令来启动外部设备,此时外部设备可以开始做准备工作了(准备CPU想要的数据或者信息),在外部设备准备过程中,CPU可以继续执行原程序的内…

CES 2024,从枕头到汽车,一切皆可AI

文 / 胡泳 北京大学新闻与传播学院教授 世界上最大的消费类电子展CES是令人难以置信的创新的展示舞台。 我在拉斯维加斯泡了四五天,跟踪了展出的大部分小工具、应用程序和概念产品。这些产品既有趣又实用,它们要么以全新的方式利用技术解决了某个特定的问…

AI对决:ChatGPT与文心一言的比较

. 个人主页:晓风飞 专栏:数据结构|Linux|C语言 路漫漫其修远兮,吾将上下而求索 文章目录 引言ChatGPT与文心一言的比较Chatgpt的看法文心一言的看法Copilot的观点chatgpt4.0的回答 模型的自我评价自我评价 ChatGPT的优势在这里插入图片描述 文…

JS-var 、let 、 const使用介绍

变量声明介绍 在我们日常开发用,变量声明有三个 var、 let 和 const,我们应该用那个呢? 首先var 先排除,老派写法,问题很多,可以淘汰掉…let or const ?建议: const 优先,尽量使…

CSS 水浪按钮

<template><view class="content"><button class="button"><view class="liquid"></view><view class="btn-txt">水浪按钮</view></button></view></template><scrip…

QT上位机开发(MFC vs QT)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 在qt之前&#xff0c;上位机开发的主要方法就是mfc。后来出现了c#语言之后&#xff0c;上位机的开发就有一部分人转成了c#。这些开发都是在windows…

Vue + JS + tauri 开发一个简单的PC端桌面应用程序

Vue JS tauri 开发一个简单的PC端桌面应用程序 文章目录 Vue JS tauri 开发一个简单的PC端桌面应用程序1. 环境准备1.1 安装 Microsoft Visual Studio C 生成工具[^2]1.2 安装 Rust[^3] 2. 使用 vite 打包工具创建一个 vue 应用2.1 使用Vite创建前端Vue项目2.2 更改Vite打包…

Android Traceview 定位卡顿问题

Traceview 是一个 Android 性能分析工具&#xff0c;用于时间性能分析&#xff0c;主要帮助开发者了解应用程序中各个方法的执行时间和调用关系。通过图形化界面查看应用程序的代码执行细节&#xff0c;包括每个方法的调用次数、方法调用的时间消耗、方法调用堆栈等信息。我们可…

基于Python实现身份证信息识别

目录 前言身份证信息识别的背景与意义自动识别身份证的需求实现环境与工具准备Python编程语言OpenCV图像处理库Tesseract OCR引擎身份证信息识别算法原理图像预处理步骤(图像裁剪、灰度化 、二值化、去噪)信息提取与解析Python代码实现通过OCR提取身份证号码代码解析身份证信息…

uniapp 如何使用echarts 以及解决tooltip自定义不生效;dataZoom报错问题

使用的是echarts-for-wx插件&#xff1b; 正常写法案例&#xff1a;给tooltip数值加个% <template><view><uni-ec-canvas class"uni-ec-canvas"id"uni-ec-canvas"ref"canvas"canvas-id"uni-ec-canvas":ec"ec&quo…

某银行主机安全运营体系建设实践

随着商业银行业务的发展&#xff0c;主机规模持续增长&#xff0c;给安全团队运营工作带来极大挑战&#xff0c;传统的运营手段已经无法适应业务规模的快速发展&#xff0c;主要体现在主机资产数量多、类型复杂&#xff0c;安全团队难以对全量资产进行及时有效的梳理、管理&…

微软推出新的 Copilot Pro 计划

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

20240116-【UNITY 学习】增加滑动功能

替换脚本PlayerMovement_02.cs using System.Collections; using System.Collections.Generic; using UnityEngine;public class PlayerMovement_03 : MonoBehaviour {private float moveSpeed; // 玩家移动速度public float walkSpeed 7; // 行走速度public float sprintSpee…

第二讲_HarmonyOS应用创建和运行

HarmonyOS应用创建和运行 1. 创建一个HarmonyOS应用2. 运行新项目2.1 创建本地模拟器2.2 启动本地模拟器2.3 在本地模拟器运行项目 1. 创建一个HarmonyOS应用 打开DevEco Studio&#xff0c;在欢迎页单击Create Project&#xff0c;创建一个新工程。 选择创建Application应用。…

Vue 富文本实现内容项目倒序

应用场景&#xff1a; 比如写计划和待办事项&#xff0c;内容少还好&#xff0c;内容多了最新的内容就放在下面了&#xff0c;每次打开要滚动到最后才能看到&#xff0c;这时可以使用倒序把最新的排在最前面。 倒序前&#xff1a; 倒序后&#xff1a; 倒序代码&#xff1a; …

力扣hot100 二叉树中的最大路径和 递归

Problem: 124. 二叉树中的最大路径和 文章目录 解题方法复杂度&#x1f496; Code 解题方法 &#x1f468;‍&#x1f3eb; 参考思路 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) &#x1f496; Code /*** Definition for a binary tree no…

Vue-16、Vue列表渲染(v-for的使用)

1、vue遍历数组 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>列表渲染</title><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/vue2/dist/vue.js"…

手写OpenFeign(简易版)

Remoting组件实现 1. 前言2. 原理说明3. 远程调用组件实现---自定义注解3.1 添加Spring依赖3.2 编写EnableRemoting注解3.3 编写RemoteClient注解3.4 编写GetMapping注解 4. 远程调用组件实现---生成代理类4.1 编写自定义BeanDefinition注册器4.2 编写自定义包扫描器4.3 编写Fa…

web开发学习笔记(2.js)

1.引入 2.js的两种引入方式 3.输出语句 4.全等运算符 5.定义函数 6.数组 7.数组属性 8.字符串对象的对应方法 9.自定义对象 10.json对象 11.bom属性 12.window属性 13.定时刷新时间 14.跳转网址 15.DOM文档对象模型 16.获取DOM对象&#xff0c;根据DOM对象来操作网页 如下图…

【软件测试】学习笔记-统一测试数据平台

这篇文章主要探讨全球大型电商企业中关于准备测试数据的最佳实践&#xff0c;从全球大型电商企业早期的测试数据准备实践谈起&#xff0c;分析这些测试数据准备方法在落地时遇到的问题&#xff0c;以及如何在实践中解决这些问题。其实&#xff0c;这种分析问题、解决问题的思路…