LLM:Scaling Laws for Neural Language Models (上)

论文:https://arxiv.org/pdf/2001.08361.pdf

发表:2020

摘要
1:损失与模型大小、数据集大小以及训练所用计算量成比例,其中一些趋势跨越了七个量级以上。

2:网络宽度或深度等其他架构细节在很大范围内影响较小。
3:模型/数据集大小和训练速度与模型大小的依赖关系由简单的方程描述。这些关系使我们能够确定在固定的计算预算下的最优资源分配。

4:更大的模型显著地更具样本效率,因此,在相对较小的数据量上训练非常大的模型并在收敛之前显著地停止。

发现

1:LLM模型的性能主要取决于scale,而不是model shape

模型性能强烈依赖于规模,这由三个因素组成:模型参数数量N(不包括嵌入)、数据集大小D和用于训练的计算C的数量。在合理的限度内,性能对其他架构超参数(例如深度与宽度的比较)的依赖非常弱。(第3节)

2:平滑的幂法则

当不受其他两个因素瓶颈的限制时,性能与三个规模因子N、D、C之间存在着强相关的幂关系三个因素的趋势跨度超过六个量级(参见图1)。我们在上端没有观察到偏离这些趋势的迹象,尽管性能最终必须在达到零损失之前趋于平稳。(第3节) 

当我们增加模型大小N、数据规模D和训练时的计算量C,语言模型的性能会平稳提高为了获得最佳性能,这三个因素需要同时缩放。实验表明:在其余两个参数不做限制条件下,测试Loss与另一个因素上都表现出幂关系。 

3:过拟合的普遍性

同步增加模型大小N和数据规模D,模型性能就会显著地提高。但是,如果我们只固定N、D中的一个,而增加另一个规模,就会出现回报递减的情况。性能的惩罚可以预测地依赖于\frac{N^{0.74}}{D},这意味着我们每次将模型规模N增加8倍,只需将数据规模D增加5倍就可以避免受到惩罚(第4节)

4:训练的普遍性

训练曲线遵循可预测的幂律,其参数大约独立于模型的大小。通过外推训练曲线的早期部分,我们可以大致预测如果我们训练更长时间会达到的损失。(第5节)

5:迁移能力随着测试性能的提高而提高

当我们在与模型训练数据分布不同的文本上评估模型时,结果与在训练验证集上的结果有强烈的相关性,但损失的偏移约为常数 - 换句话说,转移到不同的分布会产生一个常数的惩罚,但除此之外,性能大致与在训练集上的性能一致。 (第3.2.2节)

6:样本效率

大型模型比小型模式更具有样本效率,使用更少的优化步骤(图2)和更少的数据点(图4)就可以达到相同的性能水平。

紫色->绿色->黄色:表示模型的参数量N逐渐增大。

下图(左):收敛到相同水平(横线),大模型(黄色)需要的token数更少,即效率更高。

下图(右):收敛到相同水平(横线),小模型(黄色)耗时(PF-days)更少。

这里横轴单位为PF-days: 如果每秒钟可进行1015次运算,就是1 peta flops,那么一天的运算就是1015×24×3600=8.64×1019,这个算力消耗被称为1个petaflop/s-day。 

7:收敛效率低下

固定计算量C,但不对模型规模N或可用数据规模D施加限制时,我们通过训练非常大的模型并在远未达到收敛的情况下停止(参见图3)来达到最佳性能。因此,最大化计算效率的训练将比基于训练小模型到收敛的预期更具有样本效率。数据要求随着D\sim C^{^{0.27}}的训练计算而增长非常缓慢。(第6节) 

对于计算效率最优的训练:大部分的计算能力应投放到模型尺寸增加上,小部分投入到数据增加上。在数据增加方面:主要是增加batch size,迭代steps基本可以忽略。从Fig3中可以看出:

model size : Batch size : serial steps = 1,000,000 : 100 : 10

 8:最佳batch size 

 这些模型的理想批处理大小大致是损失的幂,并且可以通过测量梯度噪声尺度来确定。对于我们可以训练的最大模型,收敛时的理想批处理大 小约为 1-2 百万个token。(第 5.1 节)

 2.2 训练流程

使用 Adam 优化器对模型进行固定 2.5×105 步的训练,批大小为 512 个序列,序列包含 1024 个词元。由于内存限制,我们使用 Adafactor对我们最大的模型(超过 1B 参数)进行训练。我们尝试了各种学习率和调度,如附录 D.6 中所述。我们发现收敛结果很大程度上与学习率调度无关。除非另有说明,我们数据中包含的所有训练运行都使用了一个学习率调度,该调度包括 3000 步线性预热,然后是余弦衰减到零

3.1 估计Transformer形状和超参数独立性

当我们保持总非嵌入参数计数 N 固定时,Transformer的性能对 nlayer 、 nheads 和 dff 等形状参数依赖性非常弱。

3.2 非嵌入参数计数 N 的性能 

左图:当我们包括嵌入参数时,性能似乎除了参数数量外还强烈依赖于层数。

右图:当我们排除嵌入参数时,不同深度的模型的性能收敛到一个趋势。只有少于2层的模型或具有极端的深度宽度比的模型明显偏离趋势。 

在WebText2数据集上训练的模型,在其他各种数据集上的测试损失也是 N 的幂律,且幂律几乎相同,如上图所示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/328672.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mac pro “RESP.app”意外退出 redis desktop manager

文章目录 redis desktop manager下载地址提示程序含有恶意代码“RESP.app”意外退出解决办法:下载python3.10.并安装重新打开RESP如果还是不行,那么需要替换错误路径(我的没用)外传 最近在研究redis的消息,看到了strea…

mac查看maven版本报错:The JAVA_HOME environment variable is not defined correctly

终端输入mvn -version报错: The JAVA_HOME environment variable is not defined correctly, this environment variable is needed to run this program. Java环境变量的问题,打开bash_profile查看 open ~/.bash_profile export JAVA_8_HOME/Library/Java/JavaVirtualMachine…

Elasticsearch的基本功能和使用

Elasticsearch ,简称为 ES,是一款非常强大的开源的高扩展的分布式全文 检索引擎,可以帮助我们从海量数据中快速找到需要的内容,它可以近乎实时的 存储、检索数据.还可以可以实现日志统计、分析、系统监控等功能. 官网:https://www.elastic.c…

Spark---累加器和广播变量

文章目录 1.累加器实现原理2.自定义累加器3.广播变量 1.累加器实现原理 累加器用来把 Executor 端变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后&…

利用HTML和CSS实现的浮动布局

代码如下 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>*{m…

Python武器库开发-武器库篇之Whois信息收集模块化(四十五)

Python武器库开发-武器库篇之Whois信息收集模块化(四十五) 我们在进行渗透的时候&#xff0c;需要进行全面的信息收集&#xff0c;除了主动信息收集之外&#xff0c;我们还经常会进行被动信息收集&#xff0c;Whois信息收集就是其中的一种,我们可以利用一些网站进行Whois信息收…

区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一…

Java--HashMap中put()方法是如何实现的

一、什么是HashMap HashMap是Java中常用的数据结构之一&#xff0c;它基于哈希表实现&#xff0c;提供了快速的键值对存取能力。在HashMap中&#xff0c;put方法是最常用的方法之一&#xff0c;用于将键值对存储到HashMap中。本文将深入探究HashMap的put方法的实现原理&#x…

vue 作用域插槽、具名插槽

在子组件中使用了具名插槽<slot name"qwe" :games"games" x"我是x" y"我是y"></slot>&#xff0c; 相应的在父组件中使用<template #qwe"data">的语法来接收插槽内容。 这个语法是ok的&#xff0c; 但…

微信使用wx.getLocation

1&#xff0c;小程序管理后台 -「开发」-「开发管理」-「接口设置」” 中完成权限申请&#xff1b; 2&#xff0c;需在 app.json 中声明其需调用的地理位置相关接口 "permission": {"scope.userLocation": { "desc": "你的位置信息将用于小…

如何在 Python3 中使用变量

介绍 变量是一个重要的编程概念&#xff0c;值得掌握。它们本质上是在程序中用于表示值的符号。 本教程将涵盖一些变量基础知识&#xff0c;以及如何在您创建的 Python 3 程序中最好地使用它们。 理解变量 从技术角度来说&#xff0c;变量是将存储位置分配给与符号名称或标…

M1卡和CPU卡学习

目录介绍 01.整体概述介绍 1.1 项目背景说明1.2 IC智能卡说明1.3 基础概念介绍 02.CPU卡基础学习 2.1 CPU操作流程2.2 读卡器与卡交互指令2.3 APDU指令格式2.4 APDU指令组成2.5 发送指令详细剖析2.6 响应指令详细解析 03.M1卡基础学习 3.1 什么是M1卡3.2 M1卡数据结构3.3 M1扇…

晶振线路匹配需要进哪一些测试

晶振线路匹配的测试对于确保晶振性能的稳定性和可靠性至关重要&#xff0c;那么晶振线路匹配需要进哪一些测试呢? 晶振线路匹配测试是确保晶振性能稳定性和可靠性的关键环节。为了全面评估晶振的性能&#xff0c;需要进行一系列的测试&#xff0c;包括负载电容测试、驱动电平…

HarmonyOS 转场动画

今天 我们来说 组件内转场动画 我们可以先编写代码如下 Entry Component struct Index {State flag:boolean true;build() {Column({space: 30}) {Button("转换").onClick(()> {})Image("https://img1.baidu.com/it/u1699929707,733321099&fm253&…

nxp s32k144芯片使用J-LINK程序刷写

1.nxp s32k144 (1)打开软件&#xff1a;J-Flash V6.30j (2)新建工程&#xff1a;file->new project (3)选择芯片型号和 target interface (4)可以保存芯片和接口配置 (5)打开程序&#xff1a;File->open data file &#xff08;6&#xff09;程序刷写&#xff1a;T…

【UE5】交互式展厅数字博物馆交互是开发实战课程

长久以来&#xff0c;我们总是不断被初学者问到类似这样的问题&#xff1a;如何从头到尾做一个交互式程序开发项目&#xff1f;本套课程尝试对这个问题进行解答。 课程介绍视频如下 【UE5】数字展厅交互式开发全流程 【谁适合学习这门课】 本套课程面向初学者&#xff0c;满足…

【加强版】小学数学出题,加减乘除混合运算,支持自定义数字,一键打印

在线预览&#xff1a;在线HTML代码预览和运行工具 - UU在线工具 复制下面代码后到该地址预览即可 注意&#xff1a;在线预览不能打印。如需打印&#xff0c;在电脑本地上新建文本文档&#xff0c;粘贴代码后保存&#xff0c;然后把文件后缀改为.html运行&#xff0c;出题点击…

【Java JVM】栈帧

执行引擎是 Java 虚拟机核心的组成部分之一。 在《Java虚拟机规范》中制定了 Java 虚拟机字节码执行引擎的概念模型, 这个概念模型成为各大发行商的 Java 虚拟机执行引擎的统一外观 (Facade)。 不同的虚拟机的实现中, 通常会有 解释执行 (通过解释器执行)编译执行 (通过即时编…

rust跟我学二:模块编写与使用

图为RUST吉祥物 大家好,我是get_local_info作者带剑书生,这里用一篇文章讲解get_local_info中模块的使用。 首先,先要了解get_local_info是什么? get_local_info是一个获取linux系统信息的rust三方库,并提供一些常用功能,目前版本0.2.4。详细介绍地址:[我的Rust库更新]g…

【物联网】物联网设备和应用程序涉及协议的概述

物联网设备和应用程序涉及协议的概述。帮助澄清IoT层技术栈和头对头比较。 物联网涵盖了广泛的行业和用例&#xff0c;从单一受限制的设备扩展到大量跨平台部署嵌入式技术和实时连接的云系统。 将它们捆绑在一起是许多传统和新兴的通信协议&#xff0c;允许设备和服务器以新的…