渗透测试(12)- WireShark 网络数据包分析

目录

1、WireShack 简介   

2、WireShark 基本使用方法

3、 WireShack 抓包分析

3.1 Hypertext Transfer Protocol (应用层)

3.2 Transmission Control Protocol (传输层)

3.3 Internet Protocol Version 4(网络层)

3.4 Ethernet Il (链路层): 数据链路层以太网头部信息

3.5 Frame(物理层)


1、WireShack 简介   

        Wireshark 是一个免费开源的网络数据包分析软件。 网络数据包分析软 件的功能是截取互联网传输的网络数据包,并尽可能显示出最为详细的网络数据包数据

2、WireShark 基本使用方法

2.1 启动wireshark

在之前安装的kali下,已经预装了wireshark,点击启动

2.2 选择监听网卡,双击即可

2.3 混杂模式下对网络造成的影响较大,所以选择关闭混杂模式(暂停捕获后,点击捕获选项卡,点击)

混杂模式表示接收所有经过该网卡的数据包,即使不是发给该设备的数据包也被抓取
2.4 保存文件
注意: 保存文件格式选 pcap ,这个格式基本所有的抓包软件都能打开,兼容性最好;
2.5 WireShack 筛选器
例如:筛选抓取的http包,输入http,回车即可,如果要清除筛选条件,点击筛选框右侧的X号
筛选TCP、UDP、icmp、dns方法一样
根据ip地址筛选
筛选源地址
ip.src host == 192.168.3.67 or ip.src host == 192.168.1.1
ip.src host == 192.168.3.67 表示源 IP 地址
ip.dst host == 192.168.3.28 表示目的地址
注:两个条件用 or 进行了连接,是或的意思;当然我们也可以使用 and
or 的意思是两个条件满足一个就行
and 的意思是两个条件必须同时满足
2.6 从上几个图中可以看到,时间列显示的时间看不懂,可以更改下时间格式

3、 WireShack 抓包分析

在目标资产主动信息收集篇章中,介绍了TCP/IP五层模型,通过wireshark抓包分析,可以直观的看到五层模型的工作过程。

先简单回顾一下五层模型:

物理层----数据链路层----网络层---传输层----应用层
(1)Frame(物理层): 物理层的数据顿概况
(2) Ethernet Il (链路层): 数据链路层以太网头部信息
(3)Internet Protocol Version 4(网络层): 互联网层 IP 包头部信息
(4)Transmission Control Protocol (传输层): 传输层 T 的数据段头部信息,此处是 TCP
(5)Hypertext Transfer Protocol (应用层):应用层的信息,此处是 HTTP 协议

3.1 Hypertext Transfer Protocol (应用层)

http (超文本传输协议)是一个基于请求与响应模式的、无状态的、应用层的协议, 访问物理机 http://192.168.3.38/dvwa 时抓获的包直接过滤出 http 协议的包,如果想看到在访问之前的三手握手包,可以过滤 tcp,因为 http连接在访问前需要建立 TCP 会话。
请求包:192.168.3.67请求192.168.3.38
GET/HTTP/1.1#头部相关信息,HTTP 协议 11 版本
Request Method: GET#请求方法为头部信息
Request URL: /#表示请求资源为网站的根目录(可以理解为首页)
Request Version: HTTP/1.1 #表示 HTTP 协议 11 版本
Host:192.168.3.38#表示请求主机名称
User-Agent: Mozilla #表示用户使用的访问工具及版本
响应包:192.168.3.38 响应 192.168.3.67
HTTP/1.1 200 0K # 表示 HTTP 协议 1.1 版本,状态 200 ,表示 OK
Status Code: 200 # 响应的状态码, 200 表示正常
Response Phrase: OK # 表示响应短语 OK
Server: apache/2.4.39 # 服务器程序及版本信息
Content-Type: text/html # 内容类型

3.2 Transmission Control Protocol (传输层)

请求包:192.168.3.67请求192.168.3.38

source port  :源端口,即本机端口,这个端口是随机分配的。

Destination port:目的端口,这个端口是固定的,80是http协议,443是https协议

响应包:192.168.3.38 响应 192.168.3.67

从响应包可以发现,源端口和目的端口正好换了位置,响应时候,会根据发起方随机分配的端口进行交互。

3.3 Internet Protocol Version 4(网络层)

先看请求包的信息
再看响应包
从请求包和响应包分析,重点先关注源地址和目的地址。

3.4 Ethernet Il (链路层): 数据链路层以太网头部信息

3.5 Frame(物理层)

        物理层是 OSI 的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设 备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。简单记忆,那就是“ 信号和介质 ”,但是重点在信号,物理设备其实不在TCP/IP协议范围内,但物理层理解为包括物理设备,有助于更好的理解物理层的作用,因为信号传输需要介质,记住了物理设备,那也就记住了了物理设备的作用是传输信号的。
总结:以上通过wireshark抓包简单梳理了下TCP/IP五层协议的工作流程,TCP/IP协议是非常复杂的,通过本篇文章,旨在理解每一层的主要工作内容(从渗透角度),应用层建立连接,传输层是添加端口,网络层是增加IP地址,链路层是添加MAC地址,物理层是信号传输。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/328445.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ZooKeeper 实战(五) Curator实现分布式锁

文章目录 ZooKeeper 实战(五) Curator实现分布式锁1.简介1.1.分布式锁概念1.2.Curator 分布式锁的实现方式1.3.分布式锁接口 2.准备工作3.分布式可重入锁3.1.锁对象3.2.非重入式抢占锁测试代码输出日志 3.3.重入式抢占锁测试代码输出日志 4.分布式非可重入锁4.1.锁对象4.2.重入…

数据结构之串|数组|广义表

串 数组 广义表 总结:

【JS逆向学习】1号店

逆向目标 接口:https://passport.yhd.com/publicPassport/login.do加密参数: credentials.usernamecredentials.password 逆向过程 老规矩,输入用户名和密码,点击登录,然后过滤 XHR 请求 进入 Initiator 随便找个…

计算机毕业设计------SSH新闻资讯网站管理系统

项目介绍 该系统分成两个项目,前台项目与后台项目,需要分别运行; 后台管理员角色包含以下功能: 管理员登录,新闻专题类别管理,友情链接管理,广告管理,新闻列表管理,管理员管理,信息修改等功能。 前台用户角色包含以下功能&#…

逸学Docker【java工程师基础】1.认识docker并且安装

场景问题 在实际开发过程中我们有这样的场景问题 在开发阶段的环境配置到了其他人项目人员那里就不能运行了,尽管配置规格相同,但是在较多的不同的环境情况下还是可能会有错误。 开发:程序员:你那边可以运行了吗 测试&#xf…

JUC的常见类

目录 Callable ReentrantLock Semaphore CountDownLatch JUC即 java.util.concurrent,其中存放了一些进行多线程编程时有用的类 Callable Callable是一个接口,在我们实现Runnable创建线程时,Runnable关注的是其过程,而不关注…

【1】SM4 CBC-MAC 机制

0x01 题目 MSG1: e55e3e24a3ae7797808fdca05a16ac15eb5fa2e6185c23a814a35ba32b4637c2 MAC1: 0712c867aa6ec7c1bb2b66312367b2c8 ----------------------------------------------------- MSG2: d8d94f33797e1f41cab9217793b2d0f02b93d46c2ead104dce4bfec453767719 MAC2: 4366…

【CF闯关练习】—— 1400分(C. Make Good、B. Applejack and Storages)

🌏博客主页:PH_modest的博客主页 🚩当前专栏:cf闯关练习 💌其他专栏: 🔴每日一题 🟡 C跬步积累 🟢 C语言跬步积累 🌈座右铭:广积粮,缓…

016-Vue-黑马2023:前后端分离开发(在线接口文档),前端工程化、Element、nginx

第三节 前后端分离开发 1、介绍 开发模式 前后端混合开发:传统开发模式 前后端分离开发:当前最为主流的开发模式 页面原型需求案例:分析出接口文档 离线开发文档示例: 2、YAPI(官网已停用) 202…

【工作记录】基于springboot3+springsecurity6实现多种登录方式(一)

前言 springboot3已经推出有一段时间了,近期公司里面的小项目使用的都是springboot3版本的,安全框架还是以springsecurity为主,毕竟亲生的。 本文针对基于springboot3和springsecurity实现用户登录认证访问以及异常处理做个记录总结&#x…

NVMe-oF RDMA vs. TCP延时测试对比:端到端SPDK的意义

前不久看到一篇《NVIDIA BlueField 再创 DPU 性能世界纪录》的新闻,该测试环境是2台服务器,每台各安装2块NVIDIA Bluefield-2 DPU,形成4条100GbE以太网直连,两端分别跑NVMe-oF Target(存储目标)和Initiator…

Spring IoC 和 DI

文章目录 1. 什么是 Spring2. 什么是 IoC3. 什么是 DI4. IoC & DI 使用5. 获取 Bean 的方式5.1 根据类型获取 bean5.2 根据名称获取 bean5.3 获取bean对象的其他方式5.4 五大注解的关联 6. 方法注解7. 扫描路径8. Bean 的名称9. DI 详解9.1 属性注入9.2 构造方法注入9.3 Se…

残差网络 ResNet

目录 1.1 ResNet 2.代码实现 1.1 ResNet 如上图函数的大小代表函数的复杂程度,星星代表最优解,可见加了更多层之后的预测比小模型的预测离真实最优解更远了, ResNet做的事情就是使得模型加深一定会使效果变好而不是变差。 2.代码实现 impo…

【OpenAI】自定义GPTs应用(GPT助手应用)及外部API接口请求

11月10日,OpenAI正式宣布向所有ChatGPT Plus用户开放GPTs功能 简而言之:GPT应用市场(简称GPTs, 全称GPT Store) Ps: 上图为首次进入时的页面,第一部分是自己创建的GPTs应用,下面是公开可以使用的GPTs应用 一、创建GPTs…

Spring Cloud 微服务中 gateway 网关如何设置健康检测端点

主要是为了让 k8s 识别到网关项目已经就绪,但是又不想在里面通过 Controller 实现。因为在 Controller 中这样做并不是最佳实践,因为 Gateway 的设计初衷是专注于路由和过滤,而不是业务逻辑的处理。 在 Gateway 中配置健康检查端点可以通过以…

单向不带头链表的使用

单向不带头链表的使用 链表的创建&#xff1a; typedef struct LNode {SLDataType data;struct LNode* next; }LNode,*LinkList; 按位查找 LNode* GetElem(LinkList L, int i) {int j 1;LNode* p L->next;if (i < 0)return NULL;if (i 0)return L;while (p &&…

4种方法用Python批量实现多Excel多Sheet合并

目录 方法一&#xff1a;使用pandas库 方法二&#xff1a;使用openpyxl库 方法三&#xff1a;使用xlrd和xlwt库 方法四&#xff1a;使用os和glob库 在数据处理中&#xff0c;经常需要将多个Excel文件中的多个工作表进行合并。以下介绍了4种方法&#xff0c;使用Python批量实…

消费增值模式:引领消费者与平台共创双赢的新篇章

在数字化时代&#xff0c;消费模式正在发生深刻变革。消费者不再满足于单纯的购物行为&#xff0c;而是寻求更加个性化和有价值的消费体验。而平台也面临着如何吸引和留住消费者的挑战。消费增值模式作为一种新型的商业模式&#xff0c;正逐渐成为解决这一问题的关键。 消费增…

Java多线程并发篇----第十八篇

系列文章目录 文章目录 系列文章目录前言一、寄存器二、程序计数器三、PCB-“切换桢”四、上下文切换的活动五、引起线程上下文切换的原因前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了…

3D Guassians Splatting相关解读

从已有的点云模型出发&#xff0c;以每个点为中心&#xff0c;建立可学习的高斯表达&#xff0c;用Splatting即抛雪球的方法进行渲染&#xff0c;实现高分辨率的实时渲染。 1、主要思想 1.引入了一种各向异性&#xff08;anisotropic&#xff09;的3D高斯分布作为高质量、非结…