车载音频EMI的产生及典型音频功放AW836XX的解决方案

之前针对 eCall的文章中有提到D类音频功放需要关注EMI问题(点击文章回看《车载eCall系统音频应用解决方案》),在此展开此问题并寻求解决方案。

 

1. EMI定义与分类

电磁干扰(Electromagnetic Interference,EMI)是干扰电缆信号并降低信号完好性的电子噪音,EMI通常由电磁辐射发生源产生。

电磁干扰EMI(Electromagnetic Interference),分传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。

 

2. 车载系统EMI需求

CISPR25《用于保护用在车辆、机动船和装置上车载接受机的无线电骚扰特性的限值和测量方法》本标准是保护用在车上、船上和装置上的接受机免受无线电骚扰,规定了限值和测试方法。目前几乎所有车辆厂商均需求通过此相关标准。下图为CISPR25测试CEC相关测试标准与要求

图1 CISPR25 CEC测试标准说明

 

3.D类音频功放EMI噪声源

① 典型应用电路 


图2 AW836xxTSR-Q1典型应用图


② 噪声源分
D类功放的EMI的干扰源主要是来自三个地方:
1)工作时开关调制频率导致的电源上的纹波抖动
2)开关调制过程中大电流随时间的变化di/dt
3)开关调制过程中电压随时间的变化dv/dt

除此之外,整个PCB板器件的布局以及布线对整个电路系统的EMI都会产生影响。下面将在原理图设计、芯片设计时自身EMI抑制功能、PCB设计分别介绍对EMI的影响分析。


 图3  D类功放噪声源示意


4. EMI的解决方法

① 原理图设计
· 电源噪声滤波网络设计

电源网络噪声处理常用方式可主要分为以下三种:
1)带有共模电感的共模噪声抑制电路
2)Pi型滤波网络
3)由磁珠与电容构成的高频滤波电路

具体电路设计可以依据噪声处理要求进行合理选择。主要电路结构如下图所示。

图4  常用的电源噪声滤波网络

由于D类功放工作时调制产生的电流脉冲会导致PVCC引脚上较大的电压纹波,若不进行处理将会沿导线传导至整个电源网络,如图4所示AW836xxTSR-Q1电源网络做了PI型滤波设计,可有效降低电源上的噪声幅值及高频干扰,示波器实测波形如下。

图5 D类调制引入的噪声

图6 滤波网络处理后的噪声

· 开关噪声整形电路设计

由于芯片引脚,PCB走线,器件杂散参数等寄生参数的存在,高频开关电路中在开关动作瞬间会产生开关振铃。振铃的存在,可能使得开关管承受的电压超过其耐压值而发生击穿;另一方面,开关振铃为远超开关频率的高频振铃,会伴随很高的dv/dt,进而带来传导和辐射的EMI问题,所以尽可能地抑制开关振铃是高频开关电路设计中一个重要环节。由电阻电容组成的RC-Snubber电路可以有效抑制振铃,进而有效抑制EMI。图7为不加RC-Snubber电路的开关波形,图8加RC-Snubber电路的开关波形,对比显示高频振荡得到明显改善。

对EMI的影响如图9,图10。高频效果由不可通过CLASS5等级改善为可通过CLASS5,对EMI效果改善明显。

图7  开关振铃引起的高频振荡

图8  RC-Snubber 电路高频吸收

图9 不加RC的EMI测试 

图10 加RC的EMI测试

· LC滤波电路设计

中大功率音频设计时,考虑EMI指标往往需要加LC滤波器用于抑制调制信号与高频噪声,图2所示LC滤波电路的截止频率计算方式如下:

对于低通滤波电路而言,截止频率外高频信号将以40dB/Dec进行衰减。

  图11 LC滤波电路对基频及谐波抑制
 

② 芯片EMI抑制功能
· 调制频率选择
基于图1所示CISPR25测试标准,300k~530k,1.8M~5.9M等频段并不在测试要求范围内,AW836xxTSR-Q1系列推出调制频率为400kHz/500kHz产品,后续将会推出2.1MHz产品(更小的输出电感与输出电容,更低的成本),可避免因基波能量落在测试范围,从而规避基波能量过大而超限的情况。

· 扩频功能
扩频(Spread Spectrum,SS)是将传输信号的频谱(spectrum)打散到较其原始带宽更宽的一种通信技术,从而将原始频带能量分摊在所扩展的频带已降低基频能量,是EMI抑制常用手段。图13,图14对比测试图展示了扩频功能对EMI的影响。


图12 扩频频谱


图13 不开扩频 EMI测试数据

图14 开启扩频 EMI测试数据
 

· 边沿调整功能

D类功放输出边沿的翻转带来大电流随时间的变化di/dt,电压随时间的变化dv/dt;这些都会影响引入高频噪声,调沿功能即可以调整边沿速率,进而降低Δt时间内电流/电压变化量。

图15,图16对比测试图展示了调沿功能对EMI的影响,高频处的EMI被明显优化。

图15 默认边沿速率 EMI测试数据

图16 边沿调缓 EMI测试数据


③ PCB设计
合理的PCB的布局、布线以及器件选型等对EMI影响至关重要,AW836xxTSR主要从电源网络,输出功率信号做简要说明。

1)完整的地参考平面,以尽量减少发射、串扰和噪声

2)电源网络尽量缩短路径且与系统其他共享电压网络呈星形连接,尽量避免菊花链形式,避免环路的形成

3)电源网络与D类功放输出网络保持一定距离,避免敏感器件的干扰

4)避免90°弯角走线;

5)输出端的LC滤波网络及RC-Snubber吸收电路越靠近芯片越好,降低滤波前的网络长度

6)高频退耦滤波电容建议靠近PA的PVCC引脚摆放,在最小环路路径之内摆放,避免高频去耦失效

7)在L的选型上尽量使用全封闭电感,避免磁泄露导致的磁耦合产生干扰或不必要的损耗

8)电容选用低ESR&ESL型号,电容的地建议就近与主参考地连接,且过孔尽量多,减少过孔带来的寄生振荡

图17 AW836xxTSR PCB布局&布线

图18 完整的地参考平面

登录大大通,了解更多详情,解锁1500+完整应用方案,更有大联大700+FAE在线答疑解惑!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/328394.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

geemap学习笔记049:下载Landsat数据时遇到的一个问题

前言 最近在下载Landsat 8 地面反射率数据(Surface Reflectance)时,遇到了一个问题,无论是使用geemap.ee_export_image_to_drive() 函数还是geemap.download_ee_image() 函数下载的数据,易康都打不开,显示…

【CSDN博客系列】自定义模块

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

还在为crontab表达式发愁吗,快使用这个工具

是不是每次要定义cron表达式的时候,都去百度翻找资料,cron表达式难写难记真是苦天下程序员久已。有没有什么不拥记的办法就轻松掌握呢?最近发现这个CrontabGuru神器,强烈推荐,真是广大程序员的福音了。 简介 Crontab…

电脑技巧:安装手机与Win10电脑怎样互传文件,看完你就会了

目录 一、Windows网络邻居功能 二、数据线传输 三、蓝牙连接 大家在日常工作当中,会遇到需要实现手机和Win10电脑之间的文件传输,今天小编给大家推荐使用Win10系统自带的网络邻居功能来实现手机与电脑之间数据的传输,希望对大家日常办公提…

喜讯!无垠智能模糊测试系统入选“2023软件供应链优秀成果”

近日,中国信通院信息通信软件供应链安全社区正式公布了“2023软件供应链优秀成果”,其中,云起无垠的无垠智能模糊测试系统凭借其自主研发的创新成果,成功入选该名单。 图 获奖成果 自发起以来,软件供应链优秀成果案例…

html画动态桃心

html画动态桃心 效果图&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetwindows-1252"><title></title><style>* {padding: 0;margin…

从uptime看linux平均负载

从前遇到系统卡顿只会top。。top看不出来怎么搞呢&#xff1f; Linux系统提供了丰富的命令行工具&#xff0c;以帮助用户和系统管理员监控和分析系统性能。在这些工具中&#xff0c;uptime、mpstat和pidstat是非常有用的命令&#xff0c;它们可以帮助你理解系统的平均负载以及资…

电子行业除镍树脂深度出水0.02ppm

项目名称 电子行业贴片电容废水除镍项目 工艺选择 两级串联运行 工艺原理 亚氨基二乙酸和重金属离子通过螯合作用形成稳定的配位键&#xff0c;实现选择性吸附重金属 项目背景 贴片电容&#xff0c;也被称为多层片式陶瓷电容器&#xff08;MLCC&#xff09;&#xff0c;…

SQL Server Management Studio创建数据表

文章目录 一、建表注意事项1.1 数据类型1.2 建立数据表的基本SQL语法 二、实例说明2.1 创建数据表2.2 实例2 三、标识列和主键示例&#xff1a; 一、建表注意事项 1.1 数据类型 可以看这个去了解数据类型&#xff1a; 1.2 建立数据表的基本SQL语法 建立数据表的基本 SQL 语…

UDS诊断(ISO14229-1) 36服务

文章目录 功能简介应用场景请求和响应1、请求2、子功能3、肯定响应4、否定响应 NRC 判断优先级顺序报文示例1、下载数据到服务器 UDS中常用 NRC 功能简介 36服务&#xff0c;即 TransferData&#xff08;传输数据&#xff09;服务&#xff0c;客户端利用 TransferData&#xf…

十、Qt 操作PDF文件

《一、QT的前世今生》 《二、QT下载、安装及问题解决(windows系统)》《三、Qt Creator使用》 ​​​ 《四、Qt 的第一个demo-CSDN博客》 《五、带登录窗体的demo》 《六、新建窗体时&#xff0c;几种窗体的区别》 《七、Qt 信号和槽》 《八、Qt C 毕业设计》 《九、Qt …

数学建模.皮尔逊相关系数

一.前言 皮尔逊相关系数说白了就是一次函数中的斜率k&#xff0c;反应两个变量之间的关系&#xff0c;与斜率不同的地方在于其数值在1和-1之间&#xff0c;越接近于1&#xff0c;则说明两个变量之间是完全正向的线性关系&#xff1b;越接近于-1&#xff0c;说明两个变量之间是完…

RTMP对接腾讯云问题记录

RTMP对接腾讯云问题分析报告 问题现象及原因分析 1. 连不上腾讯云RTMP服务器 连不上腾讯云RTMP服务器&#xff0c;抓包显示服务器在握手完成后&#xff0c;主动断开了当前TCP链接。问题原因可能是connect中的tcUrl不能把域名转为IP&#xff0c;导致在握手不久服务器主动断开…

yum仓库详解(命令+搭建)

目录 一、初步了解yum 1、yum简介 2、yum实现过程 二、yum配置文件及命令 1、 yum配置文件 1.1 主配置文件 1.2 仓库设置文件 1.3 日志文件 2、yum命令详解 三、搭建仓库的方法 1、搭建本地yum仓库 2、搭建阿里云仓库&#xff08;http方式外网环境&#xff09; 3、f…

CSDN 年度总结|知识改变命运,学习成就未来

欢迎来到英杰社区&#xff1a; https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区&#xff1a; https://bbs.csdn.net/topics/617897397 &#x1f4d5;作者简介&#xff1a;热爱跑步的恒川&#xff0c;致力于C/C、Java、Python等多编程语言&#xff0c;热爱跑步&#xff…

目标检测开源数据集——道路坑洼

一、危害 对车辆的影响&#xff1a;道路坑洼会导致车辆行驶不稳&#xff0c;增加车辆的颠簸&#xff0c;不仅影响乘坐舒适度&#xff0c;还可能对车辆的悬挂系统、轮胎等造成损害。长期在坑洼路面上行驶&#xff0c;车辆的减震系统、悬挂系统等关键部件容易受损&#xff0c;进…

C语言第一弹---C语言基本概念(上)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 C语言基本概念 1、C语言是什么&#xff1f;2、C语言的历史和辉煌3、编译器的选择VS20223.1、编译和链接3.2、编译器对比3.3、VS2022优缺点 4、VS项目和源文件、头…

IDEA 在本地启动多个 SpringBoot 后端服务模拟集群

目录 方式一&#xff1a;使用 IDEA 界面在多个后端端口运行同一个项目 方式二&#xff1a;通过控制台在运行项目 jar 包时传入端口配置 方式一&#xff1a;使用 IDEA 界面在多个后端端口运行同一个项目 1. 点击 Run / Debug 在默认端口启动项目 2. 点击 Services&#xff0…

Android中的SPI实现

Android中的SPI实现 SPI是JVM世界中的标准API&#xff0c;但在Android应用程序中并不常用。然而&#xff0c;它可以非常有用地实现插件架构。让我们探讨一下如何在Android中利用SPI。 问题 在Android中&#xff0c;不同的提供者为推送功能提供服务&#xff0c;而在大型项目中…

『C++成长记』内存管理

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;C &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、C/C内存分布 二、内存管理方式 &#x1f4d2;2.1C语言内存管理方式 &#x…