SDRAM小项目——命令解析模块

简单介绍:

在FPGA中实现命令解析模块,命令解析模块的用来把pc端传入FPGA中的数据分解为所需要的数据和触发命令,虽然代码不多,但是却十分重要。

SDRAM的整体结构如下,可以看出,命令解析模块cmd_decode负责解析uart_rx中的信息

分析:

命令解析模块主要分离触发信号和需要写入数据data,uart发送端发送数据55时后表示之后的四组数据应该写入,发送aa则表示读命令,开始读数据。

uart_flag表示数据到来。

命令解析模块计数器rec_num变化时相对于uart_data延迟一个周期,这是因为rec_num为条件,确保其他变量的数据稳定性。

cmd_reg为55表示写数据,aa表示读数据,都在rec_num等于0的时候开始变化。

命令解析模块代码:

module cmd_decode(
		input		sclk,
		input		srst,
		//from uart
		input 		uart_flag,
		input	[7:0]	uart_data,
		//
		output wire		wr_trig,
		output	wire	rd_trig,
		output	wire	wfifo_wr_en,
		output wire [7:0] wfifo_data	
);

//==========================================================
//=======	define parameter and internal signal	========
//==========================================================
localparam			REC_MUN_END =  4;

reg		[3:0]		rec_num;
reg		[7:0]		cmd_reg;

//==========================================================
//====================	main	code	====================
//==========================================================

always@(posedge sclk or negedge srst) begin
		if(srst == 1'b0)
			rec_num <= 'd0;
		else if(uart_flag == 1'b1 && uart_data == 8'haa &&rec_num == 'd0)
			rec_num <= 'd0;           //不自加
		else if(rec_num == REC_MUN_END && uart_flag == 1'b1)
			rec_num <= 'd0;
		else if(uart_flag == 1'b1)
			rec_num <= rec_num +1'b1;
end

always@(posedge sclk or negedge srst )begin
		if(srst == 1'b0)
			cmd_reg <= 'd0;
		else if(uart_flag == 1'b1 && rec_num == 'd0)
			cmd_reg = uart_data ;
end

/*  always@(posedge sclk or negedge srst )begin
		if(srst == 1'b0)
			wr_trig <= 'd0;
		else if(rec_num == REC_MUN_END && uart_flag == 1'b1)
			wr_trig <= 1'b1;
		else 
			wr_trig <= 1'b0;
end

always@(posedge sclk or negedge srst )begin
		if(srst == 1'b0)
			rd_trig <= 'd0;
		else if(rec_num == 'd0 && cmd_reg == 8'haa)
			rd_trig <= 1'b1;
		else 
			rd_trig <= 1'b0;
end

always@(posedge sclk or negedge srst )begin
		if(srst == 1'b0)
			wfifo_wr_en <= 'd0;
		else if(uart_flag == 1'b1 && rec_num != 'd0)
			wfifo_wr_en <= 1'b1; 
end */

assign wr_trig  = (rec_num == REC_MUN_END )? uart_flag : 1'b0;
assign rd_trig = (rec_num == 'd0 && uart_data == 8'haa)? uart_flag : 1'b0;
assign wfifo_wr_en  = (rec_num >= 1'd1) ? uart_flag :1'b0;
assign wfifo_data = uart_data ;

endmodule

测试代码:

`timescale 1ns/1ns

module tb_cmd_decode;

reg 		sclk;
reg 		srst; 
reg 		uart_flag;
reg  		[7:0]uart_data;

wire		wr_trig	    ;
wire		rd_trig	    ;
wire		wfifo_wr_en ;
wire	[7:0]	wfifo_data	;


initial begin
		sclk =1;
		srst = 0;
		#100
		srst = 1;
end

always #5 sclk   = ~sclk;

initial begin
		uart_flag <= 0;
		uart_data  <= 0;
		#200
		uart_flag <= 1;
		uart_data <= 8'h55;
		#10
		uart_flag <= 0;
		
		#200
		uart_flag <= 1;
		uart_data <= 8'h12;
		#10
		uart_flag <= 0;
		
		#200
		uart_flag <= 1;
		uart_data <= 8'h34;
		#10
		uart_flag <= 0;
		
		#200
		uart_flag <= 1;
		uart_data <= 8'h56;
		#10
		uart_flag <= 0;
		
		#200
		uart_flag <= 1;
		uart_data <= 8'h78;
		#10
		uart_flag <= 0;
		
		#200
		uart_flag <= 1;
		uart_data <= 8'haa;
		#10
		uart_flag <= 0;
end

cmd_decode  cmd_decode_inst(
		.sclk					(sclk),
		.srst					(srst),
		.uart_flag				(uart_flag),
		.uart_data				(uart_data),
		.wr_trig				(wr_trig),
		.rd_trig				(rd_trig),
		.wfifo_wr_en			(wfifo_wr_en),
		.wfifo_data	            (wfifo_data)
);

endmodule

modelsim脚本:

##create work library
vlib work

vlog		"./tb_cmd_decode.v"
vlog		"./cmd_decode.v"

vsim	-voptargs=+acc work.tb_cmd_decode

# Set the window types
view wave
view structure
view signals

add wave -divider {tb_cmd_decode}
add wave tb_cmd_decode/*
add wave -divider {cmd_decode}
add wave tb_cmd_decode/cmd_decode_inst/*

run 10us

问题:

1.为什么wr_flag信号要在第四个数据发送的时候拉高,而不是在四个数据发送结束的时候拉高(视频上讲的是发送写trig信号的时候要把FIFO中的数据拿出来,所以不是在发送55的时候就拉高)

收获:

1.对于fpga的时序图设计,要搞清楚数据流的流向问题,所利用的条件,才能设计出合理的时序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/328248.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络分层及三次握手

5-网络 数据传输 服务器如何响应 网络分层和概念 2个地址&#xff1a;ip:逻辑地址&#xff1b;mac物理地址 通信过程中链路会发生转换&#xff0c;但是网络层寻址是不变的 ip地址不变&#xff0c;mac会变 每层的协议 每层协议指的就是约定和规范 应用层&#xff1a;cdn&dns…

QT第五天

使用QT绘图和绘图事件&#xff0c;完成仪表盘绘图&#xff0c;如下图&#xff1a; 程序运行结果&#xff1a; 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPainter> #include <QPen> #include <QBrush&…

React初探:从环境搭建到Hooks应用全解析

React初探&#xff1a;从环境搭建到Hooks应用全解析 一、React介绍 1、React是什么 React是由Facebook开发的一款用于构建用户界面的JavaScript库。它主要用于构建单页面应用中的UI组件&#xff0c;通过组件化的方式让开发者能够更轻松地构建可维护且高效的用户界面。 Reac…

ubuntu qt 运行命令行

文章目录 1.C实现2.python实现 1.C实现 下面是封装好的C头文件&#xff0c;直接调用run_cmd_fun()即可。 #ifndef GET_CMD_H #define GET_CMD_H#endif // GET_CMD_H #include <iostream> #include<QString> using namespace std;//system("gnome-terminal -…

LaTeX系列6——表格

\documentclass[UTF-8]{ctexart} \begin{document} \begin{tabular}{|c|c|c|} \hline 单元格1&单元格2&单元格3\\ \hline 单元格4&单元格5&单元格6\\ \hline 单元格7&单元格8&单元格9\\ \hline \end{tabular} \end{document} 1.表格里面的信息要放在 \…

芯品荟 | 电脑机箱键盘副屏市场调研报告

一.产品简介 1.带TFT彩屏电脑机箱 2.带小TFT彩屏电脑键盘 为什么电脑机箱&键盘&#xff0c;要带屏&#xff1f; 带屏的电脑机箱&键盘客户群体? 电竞玩家、设计师、电子发烧友、股民...... 二、市场规模 中国电脑机箱年产量约6000万台&#xff0c;键盘年产量约3亿…

一文掌握SpringBoot注解之@Async知识文集(1)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

用LED数码显示器伪静态显示数字1234

#include<reg51.h> // 包含51单片机寄存器定义的头文件 void delay(void) //延时函数&#xff0c;延时约0.6毫秒 { unsigned char i; for(i0;i<200;i) ; } void main(void) { while(1) //无限循环 { P20xfe; …

介绍下Redis?Redis有哪些数据类型?

一、Redis介绍 Redis全称&#xff08;Remote Dictionary Server&#xff09;本质上是一个Key-Value类型的内存数据库&#xff0c;整个数据库统统加载在内存当中进行操作&#xff0c;定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作&#xff0c;Redis的性…

Android 布局菜鸟 android中的布局类型和特点?

一、LinearLayout(线性布局) 1、 特点: 主要以水平或垂直方式来排列界面中的控件。并将控件排列到一条直线上。在线性布局中,如果水平排列,垂直方向上只能放一个控件,如果垂直排列,水平方向上也只能放一个控件。 2、适⽤场景: Android开发中最常见的 ⼀种布局⽅式,排列…

基于若依的ruoyi-nbcio系统调用代码生成表的注意问题

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/n…

图像分类 | 基于 Labelme 数据集和 VGG16 预训练模型实现迁移学习

Hi&#xff0c;大家好&#xff0c;我是源于花海。本文主要使用数据标注工具 Labelme 对自行车&#xff08;bike&#xff09;和摩托车&#xff08;motorcycle&#xff09;这两种训练样本进行标注&#xff0c;使用预训练模型 VGG16 作为卷积基&#xff0c;并在其之上添加了全连接…

【零基础入门Python数据分析】Anaconda3 JupyterNotebookseaborn版

目录 一、安装环境 python介绍 anaconda介绍 jupyter notebook介绍 anaconda3 环境安装 解决JuPyter500&#xff1a;Internal Server Error问题-CSDN博客 Jupyter notebook快捷键操作大全 二、Python基础入门 数据类型与变量 数据类型 变量及赋值 布尔类型与逻辑运算…

爬虫案例—雪球网行情中心板块数据抓取

爬虫案例—雪球网行情中心板块数据抓取 雪球网行情中心网址&#xff1a;https://xueqiu.com/hq 目标&#xff1a;市场一览板块、热股榜板块、新股预告板块、关注排行榜板块 import datetimeimport requestsheaders {user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10…

网络编程Day3

基于UDP的TFTP文件传输 #include <myhead.h> #define SER_PORT 69 #define SER_IP "192.168.125.64" int main(int argc, const char *argv[]) {//以写的形式打开要写入的文件int fd-1;if((fdopen("./5.png",O_WRONLY|O_CREAT|O_TRUNC,0664))-1){pe…

【JVM调优系列】如何导出堆内存文件

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【征服redis6】Redis的内存淘汰详解

目录 1.redis的基本策略 2.Redis中的缓存淘汰策略 3.Redis内存不足的情况 4.几种淘汰策略的实现原理 5.项目实践与优化策略 5.1 配置案例 5.2 项目优化策略参考 数据库存储会将数据保存到磁盘中&#xff0c;而Redis的核心数据是在内存中的&#xff0c;而Redis本身主要用来…

新年刚到就有最新版,这效率没谁了……

软件简介&#xff1a; 软件【下载地址】获取方式见文末。注&#xff1a;推荐使用&#xff0c;更贴合此安装方法&#xff01; XMind 2024 v24.01.09392是一款卓越的思维导图工具&#xff0c;被公认为当今最佳选择。该软件以其简洁、清晰的界面而脱颖而出&#xff0c;所有功能都…

精确掌控并发:漏桶算法在分布式环境下并发流量控制的设计与实现

这是《百图解码支付系统设计与实现》专栏系列文章中的第&#xff08;16&#xff09;篇&#xff0c;也是流量控制系列的第&#xff08;3&#xff09;篇。点击上方关注&#xff0c;深入了解支付系统的方方面面。 本篇重点讲清楚漏桶原理&#xff0c;在支付系统的应用场景&#x…

Python和Java代码实现:切线法求解一维最优化问题

Python和Java代码实现&#xff1a;切线法求解一维最优化问题 代码实现Python代码Java代码 求解实例 根据概念查询&#xff0c;切线法定义如下&#xff1a; 切线法&#xff08;Tangent Method&#xff09;是一种用于求解非线性方程的数值方法。它也被称为牛顿法&#xff08;Newt…