基于深度学习的高精度推土机检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度推土机检测识别系统可用于日常生活中检测与定位推土机目标,利用深度学习算法可实现图片、视频、摄像头等方式的推土机目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括推土机训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本推土机检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度推土机识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的推土机数据集手动标注了推土机这一个类别,数据集总计1224张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的推土机检测识别数据集包含训练集974张图片,验证集250张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。

我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的推土机数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对推土机数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32824.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023 node 接入腾讯云短信服务,实现发送短信功能

1、在 腾讯云开通短信服务,并申请签名和正文模板 腾讯云短信 https://console.cloud.tencent.com/smsv2 a、签名即是短信的开头。例如 【腾讯云短信】xxxxxxx; b、正文模板即短信内容, 变量部分使用{1}, 数字从1开始累推。例如&a…

深度学习-第T10周——数据增强

深度学习-第T10周——数据增强 深度学习-第T10周——数据增强一、前言二、我的环境三、前期工作1、导入数据集2、查看图片数目 四、数据预处理1、 加载数据1.1、设置图片格式1.2、划分训练集1.3、划分验证集1.4、查看标签1.5、再次检查数据1.6、配置数据集 2、数据可视化 五、数…

软件工程实践总结

前言 这次我们学校花了很多心血在这次的课设上,真的是特别感动和感谢,当你遇到真心为你好对你好的老师的时候,真的是会觉得人间值得! 之前在学软件工程的时候我就会觉得这些理论的东西有什么用啊,什么UML,…

Scrapy框架之下载中间件(详解)

目录 Scrapy中下载中间件 概念 方法 process_request(self, request, spider) 参数: process_response(self, request, response, spider) 参数 基本步骤 示例代码 注意 Scrapy 中 Downloader 设置UA 开发UserAgent下载中间件 代码 三方模块 配置模块到Settin…

【js30天挑战】第四天:数组操作

总结 filter(筛选条件为true的项) map(你想要输出的东西),进来多少个 出去多少个 sort(),默认可排字母顺序。sort(compareFn(a, b))其中compareFn(a, b)返回的值若大于0则a在b的后面。 reduce(),最复杂。reduce(func(){上一轮计算出的结果…

Flink-SQL 写入PostgreSQL 问题汇总

​ 1.主键字段为空问题 错误信息 org.apache.flink.table.api.TableException: Column bus_no is NOT NULL, however, a null value is being written into it. You can set job configuration table.exec.sink.not-null-enforcerDROP to suppress this exception and drop …

罗技k380键盘教程

在智能手机和平板电脑上享受台式电脑般舒适便捷的输入体验。罗技蓝牙™ 多设备键盘 K380 是一款小巧独特的键盘,让您在家中任何地方都能使用个人设备进行沟通和创作。 借助便捷的易于切换™ 按钮,可以通过蓝牙™ 无线技术同时连接最多三台设备&#xff…

【实用技巧】使用USB数据线向亚马逊kindle导入电子书

一、内容简介 本文主要介绍如何使用USB数据线向亚马逊kindle阅读器导入电子书。 二、所需原料 笔记本电脑、Kindle阅读器、Kindle适配的USB-a数据线。 三、导入方法 1、使用USB-a数据线将Kindle阅读器与电脑连接。 2、找到Kindle文件夹-documents-Downloads-Items1目录。…

Django框架实现简单的接口开发

前提创建一个Django项目&#xff0c;目录如下&#xff1a; Django框架上进行GET请求接口开发示例: 1.在上面项目结构目录Template下&#xff0c;新建一个login.html页面&#xff0c;定义表单提交请求的方式为post&#xff0c;具体代码如下。 <!DOCTYPE HTML> <html …

freemarker 使用word模板赋值

1. 引包<dependency><groupId>org.freemarker</groupId><artifactId>freemarker</artifactId><version>2.3.28</version></dependency>word文档工具类import freemarker.template.Configuration; import freemarker.template.…

快来看看Java在编程语言中的优势与特性吧

作者主页&#xff1a;paper jie的博客_CSDN博客-C语言,算法详解领域博主 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 其他专栏&#xff1a;《系统解析C语言》《C语言》《C语言-语法篇》 内容分享&#xff1a…

CentOS 7.9 安装 Jenkins

CentOS 7.9 安装 Jenkins 文章目录 CentOS 7.9 安装 Jenkins一、概述二、安装1、安装 OpenJDK2、安装 Jenkins3、启动 Jenkins4、给 Jenkins 放行端口 三、初始化 Jenkins 配置1、访问2、解锁 Jenkins3、配置清华大学的源地址4、安装插件5、创建管理员用户6、完成安装 四、功能…

【C++】C++关于异常的学习

文章目录 C语言传统的处理错误的方式一、异常的概念及用法二、自定义异常体系总结 C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 1. 终止程序&#xff0c;如 assert &#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&#xff0c;除 0 错误时就会终止…

三相一次重合闸程序逻辑原理(二)

在手动合闸至故障线路或手动分闸及保护或自动装置要求不允许重合闸&#xff08;如母线、变压器保护及低频减载动作&#xff09;等情况下&#xff0c;闭锁重合闸的输入开关量触点接通&#xff0c;H4输出“1”&#xff0c;非门Z4输出“0”&#xff0c;计数器清零&#xff08;CD0&…

基于Java+SpringBoot+Vue前后端分离网课在线学习观看系统

博主介绍&#xff1a;✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

Spring Boot banner详解

Spring Boot 3.x系列文章 Spring Boot 2.7.8 中文参考指南(一)Spring Boot 2.7.8 中文参考指南(二)-WebSpring Boot 源码阅读初始化环境搭建Spring Boot 框架整体启动流程详解Spring Boot 系统初始化器详解Spring Boot 监听器详解Spring Boot banner详解 自定义banner Spring …

Kubernetes API Server源码学习(二):OpenAPI、API Resource的装载、HTTP Server具体是怎么跑起来的?

本文基于Kubernetes v1.22.4版本进行源码学习 6、OpenAPI 1&#xff09;、OpenAPI的作用 OpenAPI是由Swagger发展而来的一个规范&#xff0c;一种形式化描述Restful Service的语言&#xff0c;便于使用者理解和使用一个Service。通过OpenAPI规范可以描述一个服务&#xff1a;…

2024考研408-计算机组成原理第四章-指令系统学习笔记

文章目录 前言一、指令系统现代计算机的结构1.1、指令格式1.1.1、指令的定义1.1.2、指令格式1.1.3、指令—按照地址码数量分类①零地址指令②一地址指令&#xff08;1个操作数、2个操作数情况&#xff09;③二地址指令④三地址指令⑤四地址指令 1.1.4、指令-按照指令长度分类1.…

基于Java高校教师科研信息展示网站设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

[Hadoop] 期末答辩问题准备

0.相关概念 1.什么是NameNode&#xff1f; NameNode是整个文件系统的管理节点&#xff0c;它维护着整个文件系统的文件目录树&#xff0c;文件/目录的元信息和每个文件对应的数据块列表。并接收用户的操作请求。 2.SecondaryNameNode的主要作用&#xff1f; SecondaryNameN…