python实现Canny算子边缘检测算法

    边缘检测是一种将图片中关键信息表现出来的一种图片技术,它的结果并不是字面意思上的获取图片边缘,而是将图片有用的信息勾勒出来,类似素描的结果,但是已经去掉了很多信息。如下所示,一张原始的图片是这样的:

    

    通过边缘检测算法,我们最终得到的图片可能是这样的:

    虽然丢掉了颜色和很多细节,但是这张图片从轮廓山仍然可以看出是模特lenna。

    边缘检测算法有很多实现方式,结果也不尽相同,其中最常见的就是Canny算子的边缘检测算法,Canny边缘检测算法大致描述如下:   .

  1.      灰度化
  2.      应用高斯滤波去除噪声
  3.      计算图像强度梯度和方向
  4.      非极大值抑制 non-max-suppresion
  5.      双阈值跟踪边界

    opencv库提供了Canny算法,可以很方便的进行边缘检测,代码如下:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('lenna.png', 0)
# 灰度
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 高斯滤波 卷积 3 * 3
img_blur = cv2.GaussianBlur(img_gray, (3, 3), 0)
# x梯度
xgrad = cv2.Sobel(img_blur, cv2.CV_16SC1, 1, 0)
# y梯度
ygrad = cv2.Sobel(img_blur, cv2.CV_16SC1, 0, 1)
# 使用梯度参数进行边缘检测 阈值 50 ~ 150
edge1 = cv2.Canny(xgrad, ygrad, 50, 150)
# 直接用高斯滤波结果进行边缘检测 阈值 50 ~ 150
edge2 = cv2.Canny(img_blur, 50, 150)
cv2.imshow('origin image', img)
cv2.imshow('edge image', edge1)
cv2.imshow('edge image2', edge2)
cv2.waitKey()

    这段代码大致意思是先加载lenna.png,然后转灰度,高斯滤波平滑图片,计算梯度,使用Canny算法边缘检测。

    算法运行结果:

   根据上面提到的算法步骤,以及一些理论公式,其实这个有很多直接使用python代码实现的Canny算子边缘检测算法,如下所示,这些函数分别都是根据上面的算法步骤进行整理的:

import numpy as np
import math
import cv2


# 灰度化
def gray(img_path):
    """
    计算公式:
    Gray(i,j) = 0.299 * R(i,j) + 0.587 * G(i,j) + 0.114 * B(i,j)
    """

    # 读取图片
    img = cv2.imread(img_path, 0)
    # BGR 转换成 RGB 格式
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # 灰度化
    img_gray = np.dot(img_rgb[..., :3], [0.299, 0.587, 0.114])
    return img_gray


# 去除噪音 - 使用 5x5 的高斯滤波器
def smooth(img_gray):
    # 生成高斯滤波器
    """
    要生成一个 (2k+1)x(2k+1) 的高斯滤波器,滤波器的各个元素计算公式如下:
    H[i, j] = (1/(2*pi*sigma**2))*exp(-1/2*sigma**2((i-k-1)**2 + (j-k-1)**2))
    """
    sigma1 = sigma2 = 1.4
    gau_sum = 0
    gaussian = np.zeros([5, 5])
    for i in range(5):
        for j in range(5):
            gaussian[i, j] = math.exp((-1 / (2 * sigma1 * sigma2)) * (np.square(i - 3) + np.square(j - 3))) / (
                    2 * math.pi * sigma1 * sigma2)
            gau_sum = gau_sum + gaussian[i, j]

    # 归一化处理
    gaussian = gaussian / gau_sum

    # 高斯滤波
    W, H = img_gray.shape
    new_gray = np.zeros([W - 5, H - 5])

    for i in range(W - 5):
        for j in range(H - 5):
            new_gray[i, j] = np.sum(img_gray[i:i + 5, j:j + 5] * gaussian)

    return new_gray


# 计算梯度幅值
def gradients(new_gray):
    """
    :type: image which after smooth
    :rtype:
        dx: gradient in the x direction
        dy: gradient in the y direction
        M: gradient magnitude
        theta: gradient direction
    """
    W, H = new_gray.shape
    dx = np.zeros([W - 1, H - 1])
    dy = np.zeros([W - 1, H - 1])
    M = np.zeros([W - 1, H - 1])

    for i in range(W - 1):
        for j in range(H - 1):
            dx[i, j] = new_gray[i + 1, j] - new_gray[i, j]
            dy[i, j] = new_gray[i, j + 1] - new_gray[i, j]
            # 图像梯度幅值作为图像强度值
            M[i, j] = np.sqrt(np.square(dx[i, j]) + np.square(dy[i, j]))
    return dx, dy, M


def NMS(M, dx, dy):
    d = np.copy(M)
    W, H = M.shape
    NMS = np.copy(d)
    NMS[0, :] = NMS[W - 1, :] = NMS[:, 0] = NMS[:, H - 1] = 0
    for i in range(1, W - 1):
        for j in range(1, H - 1):
            # 如果当前梯度为0,该点就不是边缘点
            if M[i, j] == 0:
                NMS[i, j] = 0
            else:
                gradX = dx[i, j]  # 当前点 x 方向导数
                gradY = dy[i, j]  # 当前点 y 方向导数
                gradTemp = d[i, j]  # 当前梯度点

                # 如果 y 方向梯度值比较大,说明导数方向趋向于 y 分量
                if np.abs(gradY) > np.abs(gradX):
                    weight = np.abs(gradX) / np.abs(gradY)  # 权重
                    grad2 = d[i - 1, j]
                    grad4 = d[i + 1, j]

                    # 如果 x, y 方向导数符号一致
                    # 像素点位置关系
                    # g1  g2
                    #     c
                    #     g4  g3

                    if gradX * gradY > 0:
                        grad1 = d[i - 1, j - 1]
                        grad3 = d[i + 1, j + 1]

                    # 如果 x,y 方向导数符号相反
                    # 像素点位置关系
                    #     g2  g1
                    #     c
                    # g3  g4

                    else:
                        grad1 = d[i - 1, j + 1]
                        grad3 = d[i + 1, j - 1]

                # 如果 x 方向梯度值比较大
                else:
                    weight = np.abs(gradY) / np.abs(gradX)
                    grad2 = d[i, j - 1]
                    grad4 = d[i, j + 1]

                    # 如果 x, y 方向导数符号一致
                    # 像素点位置关系
                    #      g3
                    # g2 c g4
                    # g1
                    if gradX * gradY > 0:
                        grad1 = d[i + 1, j - 1]
                        grad3 = d[i - 1, j + 1]

                    # 如果 x,y 方向导数符号相反
                    # 像素点位置关系
                    # g1
                    # g2 c g4
                    #      g3
                    else:
                        grad1 = d[i - 1, j - 1]
                        grad3 = d[i + 1, j + 1]

                # 利用 grad1-grad4 对梯度进行插值
                gradTemp1 = weight * grad1 + (1 - weight) * grad2
                gradTemp2 = weight * grad3 + (1 - weight) * grad4

                # 当前像素的梯度是局部的最大值,可能是边缘点
                if gradTemp >= gradTemp1 and gradTemp >= gradTemp2:
                    NMS[i, j] = gradTemp
                else:
                    # 不可能是边缘点
                    NMS[i, j] = 0

    return NMS


def double_threshold(NMS):
    W, H = NMS.shape
    DT = np.zeros([W, H])

    # 定义高低阈值
    TL = 0.1 * np.max(NMS)
    TH = 0.3 * np.max(NMS)

    for i in range(1, W - 1):
        for j in range(1, H - 1):
            # 双阈值选取
            if (NMS[i, j] < TL):
                DT[i, j] = 0
            elif (NMS[i, j] > TH):
                DT[i, j] = 1
            # 连接
            elif (NMS[i - 1, j - 1:j + 1] < TH).any() or (
                    NMS[i + 1, j - 1:j + 1].any() or (NMS[i, [j - 1, j + 1]] < TH).any()):
                DT[i, j] = 1
    return DT


def canny(img):
    img_gray = gray(img)
    new_gray = smooth(img_gray)
    dx, dy, M = gradients(new_gray)
    nms = NMS(M, dx, dy)
    return double_threshold(nms)


if __name__ == '__main__':
    img_url = 'lenna.png'
    img = cv2.imread(img_url)
    edgedetect = canny(img_url)
    img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    img_blur = cv2.GaussianBlur(img_gray, (3, 3), 0)
    cv2.imshow('origin img', img)
    opencvedge = cv2.Canny(img_blur, 50, 150)
    cv2.imshow('opencv edge', opencvedge)
    cv2.imshow('python edge', edgedetect)
    cv2.waitKey()

    算法运行结果;

    我们通过python算法实现的边缘检测,线条好像不是很光滑,虽然轮廓是出来了,但是线条很糙。这其实是代码里面一个计算梯度的地方正好写反了。

    我们调整代码如下:

dx[i, j] = new_gray[i, j + 1] - new_gray[i, j]
dy[i, j] = new_gray[i + 1, j] - new_gray[i, j]

执行结果如下;

虽然结果与opencv Canny算法结果有些差别,但是线条明显光滑了很多,比之前的结果要好。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32636.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自学黑客/网络安全工具软件大全100套

黑客工具软件大全100套 1 Nessus&#xff1a;最好的UNIX漏洞扫描工具 Nessus 是最好的免费网络漏洞扫描器&#xff0c;它可以运行于几乎所有的UNIX平台之上。它不止永久升级&#xff0c;还免费提供多达11000种插件&#xff08;但需要注册并接受EULA-acceptance–终端用户授权…

Redis7【④ Redis 发布 订阅】

Redis发布和订阅 本章了解即可&#xff0c;命令可以不用敲。 Redis 发布和订阅&#xff08;Publish/Subscribe&#xff0c;简称 Pub/Sub&#xff09;是一种消息传递模式&#xff0c;用于在 Redis 中实现消息的发布和订阅。 在 Redis 中&#xff0c;发布者&#xff08;Publi…

高通9x07平台关于模块modem射频 RF MCFG生成MBN的总结

1.1: cefs&#xff08;efs2.mbn)制作步骤&#xff1a;1.擦擦CEFS分区&#xff1b;2.导入HW_MBN,并激活&#xff1b;3.导入静态NV&#xff1b;4.生成CEFS; 1.2&#xff1a;激活hw_default mbn后&#xff0c;/policyman/目录下device_config.xml必需保留&#xff1b; 1.3&#xf…

Vision Transformer

论文名称&#xff1a; An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 一、Patch Embedding模块 class PatchEmbed(nn.Module): # 对应Patch Embedding模块def __init__(self, img_size224, patch_size16, in_c3, embed_dim768, norm_layerNone…

实现一个转盘随机选择器

实现效果 完整代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title><…

Midjourney如何用参考图/垫图来绘画图

大家都知道AI绘画工具每次生成的效果都是随机的&#xff0c;但是现在很多AI绘图工具都提供了利用参考图/垫图的方式出图&#xff0c;这样就可以让让AI画作生成自己想要的布局、场景、色彩等等。 国内的AI绘图工具一般都好操作&#xff0c;国外主流的Midjourney也可以添加参考图…

DataV图表-排名轮播表自定义

DataV图表-排名轮播表自定义数据大屏可视化 场景&#xff1a;需要计算根据分数不同柱子的颜色不同 低于60分变成为橙色柱子 一开始使用的是 dv-scroll-ranking-board 这个不可以自定义颜色和属性 我们可以更改 dv-scroll-board 样式来实现 排名轮播表 安装 data-view npm ins…

2023年最新互联网Java面试八股文出炉(附大厂P5-P8技术栈)

为什么感觉 Java 面试变难了&#xff1f; 几年前&#xff0c;你只需要简单的ssm框架&#xff0c;就能轻松找到一份Java的工作&#xff0c;但现在不一样了&#xff0c;随着涌入这个行业的人越来越多&#xff0c;同一个岗位需要筛选掉更多人&#xff0c;要求自然水涨船高&#x…

短视频------Adobe Photoshop 笔记总结

一、Adobe Photoshop 使用方式方法 ctrlc/v 复制 粘贴 ctrlx 剪切 ctrla 全选 ctrlz撤销 ctrls保存 ENTER 回车 换行 CTRL 调取定界框 CAPSLOCK 大写锁定 Esc 退出 Delete 删除 Backspace 退格 Ctrl shi alt 三个控制键 Shi 连选 ctrl 加选/减选 锁屏 WinL 打开运行命令窗口 …

WLAN的Roaming机制和案例log解析

一 、WLAN漫游简介 [百度百科]:当网络环境存在多个相同SSID的AP,且它们的微单元互相有一定范围的重合时,无线用户可以在整个WLAN覆盖区内移动,无线网卡能够自动发现附近信号强度最大的AP,并通过这个AP收发数据,保持不间断的网络连接,这就称为无线漫游。 简单来说:WLA…

【SpringCloud config分布式配置中心】—— 每天一点小知识

&#x1f4a7; S p r i n g C l o u d c o n f i g 分布式配置中心 \color{#FF1493}{SpringCloud config分布式配置中心} SpringCloudconfig分布式配置中心&#x1f4a7; &#x1f337; 仰望天空&#xff0c;妳我亦是行人.✨ &#x1f984; 个人主页——微风撞见云的…

【Spring Cloud系列】-Eureka服务端高可用详解

【Spring Cloud系列】-Eureka服务端高可用详解 文章目录 【Spring Cloud系列】-Eureka服务端高可用详解一. 序言二. 什么是高可用性三. 什么是CAP一致性&#xff08;Consistency&#xff09;可用性&#xff08;Availability&#xff09;分区容错&#xff08;Partition-toleranc…

Lowe‘s EDI 项目数据库方案开源介绍

近期为了帮助广大用户更好地使用 EDI 系统&#xff0c;我们根据以往的项目实施经验&#xff0c;将成熟的 EDI 项目进行开源。用户安装好知行之桥EDI系统之后&#xff0c;只需要下载我们整理好的示例代码&#xff0c;并放置在知行之桥指定的工作区中&#xff0c;即可开始使用。 …

使用cloc软件对项目的代码行数进行统计

1、下载cloc https://github.com/AlDanial/cloc/releases 进入之后选择exe进行下载。 2、下载之后随意放在任意文件夹下&#xff0c;并修改命名为cloc.exe 3、然后设置该目录为环境变量 4、在需要统计代码行数的目录&#xff0c;shift右键&#xff0c;打开Powershell窗口 5、输…

多元回归预测 | Matlab麻雀算法(SSA)优化极限学习机ELM回归,SSA-ELM回归预测,多变量输入模型

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab麻雀算法(SSA)优化极限学习机ELM回归,SSA-ELM回归预测,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码 %% 清空环境变…

认识 SpringCloud 核心组件

✅作者简介&#xff1a;大家好&#xff0c;我是Cisyam&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Cisyam-Shark的博客 &#x1f49e;当前专栏&#xff1a; 微服务探索之旅 ✨特色专…

Spring Resources资源操作

文章目录 1、Spring Resources概述2、Resource接口3、Resource的实现类3.1、UrlResource访问网络资源3.2、ClassPathResource 访问类路径下资源3.3、FileSystemResource 访问文件系统资源3.4、ServletContextResource3.5、InputStreamResource3.6、ByteArrayResource 4、Resour…

PyGame游戏编程

Python非常受欢迎的一个原因是它的应用领域非常广泛&#xff0c;其中就包括游戏开发。而是用Python进行游戏开发的首选模块就是PyGame。 1. 初识Pygame PyGame是跨平台Python模块&#xff0c;专为电子游戏设计&#xff0c;包含图像、声音等&#xff0c;创建在SDL&#xff08;…

DAY31——贪心

1.分发饼干 class Solution {public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int start 0;int count 0;for (int i 0; i < s.length && start < g.length; i) {if (s[i] > g[start]) {start;count;}}return count;} } …

本地离线安装SeleniumIDE(Chrome)

一、插件下载 现需要准备一台可以连接外网的电脑&#xff0c;由于受到chrome的限制&#xff0c;我们可以选择搭梯子进行直接安装相应插件&#xff0c;但考虑到部分新手不会翻墙&#xff0c;本次提供一个不需翻墙的方法。 进入https://www.crx4chrome.com/crx/181591/网页内&…