opencv_角点检测

文章内容

  1. 一个opencv检测角点的程序
运行效果

在这里插入图片描述

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

void detectCorners(Mat image)
{
    Mat grayImage;
    cvtColor(image, grayImage, COLOR_BGR2GRAY);

    vector<Point2f> corners;
    goodFeaturesToTrack(grayImage, corners, 100, 0.01, 10);

    for (int i = 0; i < corners.size(); i++)
    {
        circle(image, corners[i], 5, Scalar(0, 0, 255), -1);
    }

    imshow("Corner Detection", image);
    waitKey(0);
}

int main()
{
    Mat image = imread("E:\\SOFT_SL\\Opencv_Check\\biaoding.png");

    if (image.empty())
    {
        cout << "Failed to load image" << endl;
        return -1;
    }

    detectCorners(image);

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/325450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI数字人短视频变现项目:打造短视频运营变现新模式

如今&#xff0c;随着科技的快速发展和人们对数字内容的增长需求&#xff0c;短视频成为了互联网用户最喜爱的娱乐方式之一。然而&#xff0c;在这个竞争激烈的市场中&#xff0c;如何为短视频创作者提供更多的变现机会成为了一个重要的问题。AI数字人短视频变现项目的出现&…

【RT-DETR改进涨点】MPDIoU、InnerMPDIoU损失函数中的No.1(包含二次创新)

前言 大家好&#xff0c;我是Snu77&#xff0c;这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进&#xff0c;内容持续更新&#xff0c;每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本&#xff0c;同时修改内容也支持Re…

深入解析多目标优化技术:理论、实践与优化

本文深入探讨了多目标优化技术及其在机器学习和深度学习中的应用&#xff0c;特别聚焦于遗传算法的原理和实践应用。我们从多目标优化的基础概念、常见算法、以及面临的挑战入手&#xff0c;进而详细介绍遗传算法的工作原理、Python代码实现&#xff0c;以及如何应用于实际的机…

【React源码 - Diff算法】

介绍 在React学习中&#xff0c;Diff算法(协调算法)&#xff0c;想必我们并不陌生&#xff0c;简单来说就是一个对比新老节点寻找差异&#xff0c;然后找出最小的一个变化集&#xff0c;最后对这个最小变化集进行最小的DOM操作&#xff0c;本文将从源码来分析在React(17.0.2)中…

四、任意文件读取漏洞

一、介绍 解释&#xff1a;任意文件读取漏洞就其本身来说就是&#xff0c;攻击者绕过网站防御者设置的防御&#xff0c;读取到了正常使用者不应该读取到的内容。网站开发者使用不同的语言&#xff0c;任意文件读取漏洞利用方式就不同。 二、不同开发语言的不同漏洞点 1.PHP …

韶音、南卡、Oladance开放式耳机值得买吗?超强机型对比环节!

​虽然很多耳机音频爱好者最近都爱上了使用开放式耳机&#xff0c;但是作为一个7年音频数码测评的老司机&#xff0c;我还是要提醒一下&#xff0c;目前有很多的开放式耳机过分强调外观颜值设计&#xff0c;在音质体验和佩戴舒适性上的效果极差&#xff0c;还会有很多漏音、破音…

cesium设置近地天空盒 多种效果(附天空盒原图)

效果&#xff08;天空盒原图已放云盘在文章最后&#xff09;&#xff1a; 为了效果逼真设置了当达到一定高度时就恢复系统默认星空天空盒所&#xff0c;以设置了两个变量 一个是近地的天空盒子一个是当超过一定高度时用系统默认的 let currSkyBox; // 当前生效的Skybox let de…

OpenCV——图像按位运算

目录 一、算法概述1、逻辑运算2、函数解析3、用途 二、代码实现三、结果展示 OpenCV——图像按位运算由CSDN点云侠原创&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫。 一、算法概述 1、逻辑运算 OpenCV4 针对两个图像之…

Android studio 简单登录APP设计

一、登录界面: 二、xml布局设计: <LinearLayoutandroid:id="@+id/linearLayout"android:layout_width="match_parent"android:layout_height="match_parent"android:orientation="vertical"tools:layout_editor_absoluteX="…

二、基础篇 vue计算属性和侦听器

计算属性 模板内的表达式非常便利&#xff0c;但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护。例如&#xff1a; <div id"example">{{ message.split().reverse().join() }} </div> 在这个地方&#xff0c;模板不…

Scratch图形化编程如何快速从入门到精通

Scratch是一款由麻省理工学院媒体实验室开发的图形化编程工具&#xff0c;它以拖拽式的编程方式&#xff0c;让编程变得简单易懂&#xff0c;适合所有年龄段的人学习。无论是初学者还是有一定编程基础的人&#xff0c;都可以通过Scratch快速上手并深入学习。下面&#xff0c;65…

徐州数字孪生元宇宙赋能工业智能制造,助力传统制造业数字化转型

徐州数字孪生元宇宙赋能工业智能制造&#xff0c;助力传统制造业数字化转型。在徐州市制造业企业数字化转型的过程中&#xff0c;数字孪生技术的应用已经取得了显著成效。一方面&#xff0c;企业的生产效率得到了显著提高&#xff0c;产品质量也得到了有效保障。另一方面&#…

Postgresql 12.2 + PostGIS 3.0.1 安装部署

参考文档&#xff1a; 按照该文档安装即可&#xff0c;如果遇到报错&#xff0c;可以参考下文&#xff1a; https://blog.csdn.net/weixin_41166785/article/details/127674169 所需的安装包 在资源里面&#xff08;我看下怎么可以不用积分下载&#xff09; 1、no acceptable…

数据结构与算法-二叉树-后序遍历

二叉树的后续遍历 给你一棵二叉树的根节点 root &#xff0c;返回其节点值的 后序遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[3,2,1]递归版本实现 /*** Definition for a binary tree node.* public class TreeNode {* int val;*…

萌宠宠物用品商城设计与制作-计算机毕业设计源码79718

摘要 在社会快速发展的影响下&#xff0c;宠物商城继续发展&#xff0c;大大增加了宠物用品的数量、多样性、质量等等的要求&#xff0c;使宠物用品商城的管理和运营比过去十年更加困难。依照这一现实为基础&#xff0c;设计一个快捷而又方便的萌宠宠物用品商城是一项十分重要并…

GaussDB数据库中的MERGE INTO介绍

一、前言 二、GaussDB MERGE INTO 语句的原理概述 1、MERGE INTO 语句原理 2、MERGE INTO 的语法 3、语法解释 三、GaussDB MERGE INTO 语句的应用场景 四、GaussDB MERGE INTO 语句的示例 1、示例场景举例 2、示例实现过程 1&#xff09;创建两个实验表&#xff0c;并…

MySql前言

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;MySql&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 数据库有哪些软件&#xff1f;&#xff1f; Mysql MySql数…

Android-网络基础

http 与 https 的区别&#xff1f;https 是如何工作的&#xff1f; http 是超文本传输协议&#xff0c;而 https 可以简单理解为安全的 http 协议。https 通过在 http 协议下添加了一层 ssl 协议对数据进行加密从而保证了安全。https 的作用主要有两点&#xff1a;建立安全的信…

西瓜书读书笔记整理(十一) —— 第十一章 特征选择与稀疏学习

11.1 子集搜索与评价 11.1.1 基本概念 特征&#xff08;feature&#xff09;&#xff1a;在机器学习中&#xff0c;特征 是指从数据中提取的用于描述样本的属性或信息。 相关特征&#xff08;relevant feature&#xff09;&#xff1a;对当前学习任务有用的属性称为 “相关特…

Mindspore 公开课 - prompt

prompt 介绍 Fine-Tuning to Prompt Learning Pre-train, Fine-tune BERT bidirectional transformer&#xff0c;词语和句子级别的特征抽取&#xff0c;注重文本理解Pre-train: Maked Language Model Next Sentence PredictionFine-tune: 根据任务选取对应的representatio…