分布式搜索——Elasticsearch

Elasticsearch

文章目录

  • Elasticsearch
    • 简介
      • ELK技术栈
      • Elasticsearch和Lucene
    • 倒排索引
      • 正向索引
      • 倒排索引
      • 正向和倒排
    • ES概念
      • 文档和字段
      • 索引和映射
      • Mysql与Elasticsearch
    • 安装ES、Kibana
      • 安装单点ES
        • 创建网络
        • 拉取镜像
        • 运行
      • 部署kibana
        • 拉取镜像
        • 部署
    • 安装Ik插件
      • 扩展词词典
      • 停用词词典
    • 索引库操作
      • ping映射属性
      • 索引库的CRUD
    • 文档操作
      • 新增文档
      • 查询文档
      • 删除文档
      • 修改文档
    • RestAPI
      • mapping映射分析
      • 初始化RestClient
      • 创建索引表
      • 删除索引库
      • 判断索引库是否存在
      • 总结
    • RestClient操作文档
      • 查询文档
      • 删除文档
      • 修改文档
      • 批量导入文档
    • DSL查询文档
      • DSL查询分类
      • 全文检索查询
        • 基本语法
      • 精准查询
        • term查询
        • range查询
      • 地理坐标查询
        • 矩形范围查询
        • 附近查询
      • 复合查询
        • 相关性算分
        • 算分函数查询
        • 布尔查询
      • 搜索结果处理
        • 排序
        • 分页
      • 高亮
        • 原理
        • 实现
    • RestClient查询文档
      • 查询请求
      • 解析响应
      • match查询
      • 精确查询
      • 布尔查询
      • 排序与分页
    • 3.6.高亮
      • 3.6.1.高亮请求构建
      • 3.6.2.高亮结果解析
    • 数据聚合
      • 聚合的种类
      • DSL实现聚合
        • Bucket聚合语法
        • 聚合结果排序
        • 限定聚合范围
        • Metric聚合语法
    • RestAPI实现聚合
      • API语法
    • 自动补全
      • 拼音分词器
      • 自定义分词器
      • 自动补全查询
      • 自动补全查询的JavaAPI
    • 数据同步
      • 同步调用
      • 异步通知
      • 监听binlog
    • ES集群
      • 搭建集群
      • 创建索引库
      • 集群节点角色
      • 集群的脑裂问题
      • 分布式存储
      • 分布式查询
      • 集群故障转移

简介

Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助用户从海量数据中快速找到需要的内容。例如:在GitHub搜索代码、在百度搜索问题的答案、在打车软件搜索附近的车。

ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

Elasticsearch和Lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。是Apache的开源搜索引擎类库,提供了搜索引擎的核心API。

官网地址:https://lucene.apache.org/

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

官网地址: https://www.elastic.co/cn/

image-20230829102317218

倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据。

3)判断数据中的title是否符合用户搜索条件。

4)如果符合则放入结果集,不符合则丢弃。回到步骤1。

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

ES概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

Mysql与Elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

MySQL与Elasticsearch两者各自有自己的长处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

安装ES、Kibana

安装单点ES

创建网络

后续还要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net
拉取镜像

镜像文件比较大,可能需要等待一会

docker pull elasticsearch:7.12.1
运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms1024m -Xmx1024m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms1024m -Xmx1024m":内存大小(根据虚拟机内存大小配置,最小不要小于512M,否则后续会出现内存不足的情况)。
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

访问http://192.168.xxx.xxx:9200,如果看到以下页面,则证明elasticsearch安装成功。

image-20230630103645520

部署kibana

kibana可以提供一个elasticsearch的可视化界面,便于学习。

拉取镜像
docker pull kibana:7.12.1
部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

image-20230630104912450

此时,在浏览器输入地址访问:http://192.168.xxx.xxx:5601,即可看到结果

kibana中提供了一个DevTools界面,这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

安装Ik插件

# 进入容器内部
docker exec -it es /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart es

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。如:“泰酷辣”、“永远的神”等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录(前置目录:/var/lib/docker/volumes/es-plugins/_data ):

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

泰酷辣
永远的神

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f es

日志中已经成功加载ext.dic配置文件。

停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

“一些敏感词汇”(该内容过于敏感,不宜显示)

4)重启elasticsearch

# 重启服务
docker restart es
docker restart kibana

# 查看 日志
docker logs -f es

日志中已经成功加载stopword.dic配置文件

:当前文件的编码必须是UTF- 8格式,严禁使用Windows记事本编辑。

索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。要向es中存储数据,必须先创建“库”和“表”。

ping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

索引库的CRUD

统一使用Kibana编写DSL的方式来演示。

创建索引库和映射

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

查询索引库

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式:

GET /索引库名

修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

格式

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

删除索引库

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

添加字段

格式

PUT /索引库名/_mapping

文档操作

新增文档

语法格式

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法格式:

GET /{索引库名称}/_doc/{id}

删除文档

语法格式:

DELETE /{索引库名}/_doc/id值

修改文档

修改文档有两种方式,一种是全量修改,另一种是增量修改。

全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法格式:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法格式:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索需要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词需要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,可以统一使用ik_max_word

以下面数据结构表为例:

CREATE TABLE `tb_hotel`  (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店名称',
  `address` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店地址',
  `price` int(10) NOT NULL COMMENT '酒店价格',
  `score` int(2) NOT NULL COMMENT '酒店评分',
  `brand` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店品牌',
  `city` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '所在城市',
  `star_name` varchar(16) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店星级,1星到5星,1钻到5钻',
  `business` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '商圈',
  `latitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '纬度',
  `longitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '经度',
  `pic` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店图片',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Compact;

创建的对应索引库结构为:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

其中上面的location字段为地理坐标,包含经度、纬度。

地理坐标说明:

all字段为组合字段,其目的是将多字段的值利用copy_to合并,提供给用户搜索。

copy_to说明:

初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

因为springboot默认控制的ES版本为7.6.2,不满足使用需求,所以需要覆盖默认的ES版本

<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

初始化RestHighLevelClient

初始化代码

public class HotelIndexTest {
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.xxx.xxx:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

创建索引表

创建索引库的API如下:

代码分为三步:

  1. 创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。

  2. 添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,可以定义为静态字符串常量,让代码看起来更加优雅。

  3. 发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

根据上面的索引库结构,实现创建索引

创建一个常量类,定义mapping映射的JSON字符串常量

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

编写单元测试,实现创建索引

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比有以下几点变化:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。

  • 创建Request对象。这次是DeleteIndexRequest对象
  • 准备参数。这里是无参
  • 发送请求。改用delete方法

编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 创建Request对象。这次是GetIndexRequest对象
  • 准备参数。这里是无参
  • 发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

RestClient操作文档

为了与索引库操作分离,再次添加一个测试类

@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService; // 利用IHotelService去查询酒店数据
    
	// 初始化RestHighLevelClient
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

定义一个酒店实体类

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

前面已经知道了新增文档的DSL的语法格式

POST /索引库名/_doc/文档id

// 举例说明
POST /hotel/_doc/1
{
    "name": "Jack",
    "age": 21
}

其对应的Java代码为

@Test
void testIndexDocument() throws IOException {
    // 1.创建request对象
    IndexRequest request = new IndexRequest("hotel").id("1");  
    // 2.准备JSON文档
    request.source("{\"name\": \"Jack\", \"age\": 21}", XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

从代码中可以看出与创建索引库类似,也分为三步:

  1. 创建Request对象。
  2. 准备请求参数(DSL中的JSON文档)。
  3. 发送请求。

主要的变化在于,此处直接使用了client的API,不再使用client.indices()。

这里结合了数据库查询的数据,将查询出来的数据转换成JSON的形式新增为文档。

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(1);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

查询文档

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

在测试类中,编写单元测试

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

删除文档

删除的DSL的

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET。

单元测试方法

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

修改文档

修改有两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里主要关注增量修改。

代码示例

  • 准备Request对象。这次是修改,所以是UpdateRequest
  • 准备参数。也就是JSON文档,里面包含要修改的字段
  • 更新文档。这里调用client.update()方法

单元测试方法

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

批量导入文档

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。

@Test
void testBulk() throws IOException {
    // 1.创建Bulk请求
    BulkRequest request = new BulkRequest(); 
    // 2.添加要批量提交的请求:这里添加了两个新增文档的请求
    request.add(new IndexRequest("hotel")
                .id("101").source("json source", XContentType.JSON));
    request.add(new IndexRequest("hotel")
                .id("102").source("json source2", XContentType.JSON));
    // 3.发起bulk请求
    client.bulk(request, RequestOptions.DEFAULT);
}

这里与上面的不同之处在于Request对象为BulkRequest。调用的请求方法为client.bulk()。

单元测试方法

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

DSL查询文档

Elasticsearch的查询依然是基于JSON风格的DSL来实现的。

DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

语法格式:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

全文检索查询

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条。
  • 根据词条去倒排索引库中匹配,得到文档id。
  • 根据文档id找到文档,返回给用户。

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

基本语法

常见的全文检索查询包括:

  • match查询:单字段查询(根据一个字段查询)
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件(根据多个字段查询,参与查询字段越多,查询性能越差)。

match查询语法格式:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // FIELD:字段名
    }
  }
}

mulit_match语法格式:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确查询,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range:根据值的范围查询,可以是数值、日期的范围
term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法格式:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": { // FIELD:字段名
        "value": "VALUE"
      }
    }
  }
}
range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

语法格式:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": { // FIELD:字段名
        "gte": 100, // 这里的gte代表大于等于,gt则代表大于
        "lte": 200 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询。

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索附近的酒店。
  • 滴滴:搜索附近的出租车。
  • 微信:搜索附近的人。
矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法格式:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}
附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名。
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索。
相关性算分

在Elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果
布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

排序

Elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推。

地理坐标排序

这个查询的含义是:

  • 指定一个坐标,作为目标点(中心点)
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标到目标点的距离是多少
  • 根据距离排序

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

分页

Elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

基础分页

语法格式

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

深度分页问题

要查询9900~10000的数据,查询逻辑应该这么写

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 9900, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询9900开始的数据,也就是 第9900~第10000条 数据。

不过,Elasticsearch内部分页时,必须先查询 0~10000条,然后截取其中的9900 ~ 10000的这10条

image-20230701171746194

查询TOP10000,如果ES是单点模式,这并无太大影响。

但是Elasticsearch将来一定是集群,例如我集群有10个节点,我要查询TOP10000的数据,并不是每个节点查询1000条就可以了。

因为节点A的TO1P000,在另一个节点可能排到100000名以外了。

因此要想获取整个集群的TOP10000,必须先查询出每个节点的TOP10000,汇总结果后,重新排名,重新截取TOP10000。

image-20230701171941022

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存(官方已经不推荐使用)。

三种分页查询的实现方案及其优缺点

from + size

  • 优点:支持随机翻页
  • 缺点:深度分页问题,默认查询上限(from + size)是10000
  • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

after search

  • 优点:没有查询上限(单次查询的size不超过10000)
  • 缺点:只能向后逐页查询,不支持随机翻页
  • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

scroll

  • 优点:没有查询上限(单次查询的size不超过10000)
  • 缺点:会有额外内存消耗,并且搜索结果是非实时的
  • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

高亮

原理

日常生活中,在百度搜索时,关键字会变成红色,比较醒目,这便是高亮显示。

高亮显示的实现分为两步:

  • 给文档中的所有关键字都添加一个标签,例如<em>标签
  • 页面给<em>标签编写CSS样式
实现

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

查询请求

代码演示:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.组织DSL参数 
    request.source()
	.query(QueryBuilders.matchAllQuery());
    // 3.发送请求,得到响应结果
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // ...解析响应结果
}

// 对比DSL的查询请求
//GET /indexName/_search
//{
//  "query": {
//    "match_all": {}
//  }
//}
  • 第一步,创建SearchRequest对象,指定索引库名。

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等。

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL。
  • 第三步,利用client.search()发送请求,得到响应。

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

解析响应

响应结果的解析:

image-20230701173852465

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果。
    • SearchHits.getTotalHits().value:获取总条数信息。
    • SearchHits.getHits():获取SearchHit数组,也就是文档数组。
      • SearchHit.getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据。

完整的查询代码

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

排序与分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.高亮

高亮的代码与之前代码有两点差异较大:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

3.6.1.高亮请求构建

高亮请求的构建API如下:

高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

数据聚合

聚合可以极其方便的实现对数据的统计、分析、运算。

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

聚合的种类

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

DSL实现聚合

日常中要统计所有数据中的分类有几种,其实就是要按照分类对数据分组,也就是Bucket聚合。

Bucket聚合语法

语法格式

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}
聚合结果排序

默认情况下,Bucket聚合会 Bucket 内的文档数量,记为_count,并且按照_count降序排序。

可以指定order属性,自定义聚合的排序方式。

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}
限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

可以限定要聚合的文档范围,只要添加query条件即可

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}
Metric聚合语法

可以对桶内的数据进行运算,获得每个品牌的用户评分的min、max、avg等值。

这里就要用到Metric聚合,例如stat聚合:就可以获取min、max、avg等结果。

语法格式如下:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": {
        "field": "brand",
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因此需要在每个桶分别计算。

RestAPI实现聚合

API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法格式:

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

自动补全

在日常的搜索中,当用户在搜索框中输入字符时,就会提示出相关的搜索项。

image-20230702130143229

这种根据用户输入的字母,提示完整词条的功能即为自动补全。

因为可能需要根据拼音字母来推断,因此要用到拼音分词功能。

拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。

地址:https://github.com/medcl/elasticsearch-analysis-pinyin

安装方式:

  1. 下载解压(注意要与elasticsearch的版本保持一致:7.12.1)。
  2. 上传至虚拟机中的elasticsearch的plugin目录。
  3. 重启elasticsearch

详细安装步骤可以查看IK分词器的安装过程。

测试用法

POST /_analyze
{
  "text": ["今天天气真好"],
  "analyzer": "pinyin"
}

测试结果

{
  "tokens" : [
    {
      "token" : "jin",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "jttqzh",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "tian",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "tian",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "qi",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "zhen",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "hao",
      "start_offset" : 0,
      "end_offset" : 0,
      "type" : "word",
      "position" : 5
    }
  ]
}

自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

image-20230702150508682

声明自定义分词器的语法格式:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
		  "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.6/search-suggesters.html

举例

一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

自动补全查询的JavaAPI

对照自动补全查询的DSL,对应的推出JavaAPI的使用方法

而自动补全的结果也比较特殊,解析的代码格式:

数据同步

Elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

image-20230702162647795

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

同步调用

image-20230702162842615

基本步骤:

  • demo对外提供接口,用来修改elasticsearch中的数据。
  • 后台管理服务在完成数据库操作后,直接调用demo提供的接口

异步通知

image-20230702163000375

基本流程:

  • admin对mysql数据库数据完成增、删、改后,发送MQ消息。
  • demo监听MQ,接收到消息后完成elasticsearch数据修改。

监听binlog

image-20230702163133626

基本流程:

  • 给mysql开启binlog功能。
  • mysql完成增、删、改操作都会记录在binlog中。
  • demo基于canal监听binlog变化,实时更新elasticsearch中的内容。

三种方式的优缺点

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

ES集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    此处把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高

为了在高可用和成本间寻求平衡,可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,以3分片,每个分片备份一份为例:

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

搭建集群

部署es集群可以直接使用docker-compose来完成,不过要求Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

es运行前需要修改一些Linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加以下内容

vm.max_map_count=262144

执行命令使配置生效

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

创建索引库

在DevTools中输入命令

PUT /item
{
    "settings": {
        "number_of_shards": 3, // 分片数量
        "number_of_replicas": 1 // 副本数量
    },
    "mappings": {
        "properties": {
            // mapping映射定义。。。
        }
    }
}

集群节点角色

elasticsearch中集群节点有着不同的职责划分:

节点类型配置参数默认值节点职责
master eligiblenode.mastertrue备选主节点:主节点可以管理和记录集群状态,决定分片在哪个节点、处理创建和删除库索引的请求
datanode.datatrue数据节点:存储数据、搜索、聚合、CRUD
ingestnode.ingesttrue数据存储之前的预处理
coordinating上面三个参数都为false,则coordinating节点协调节点:路由请求到其它节点,合并到其它节点处理的结果,返回给用户

真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

Elasticsearch中的每个节点角色都有自己不同的职责,因此建议集群部署时,每个节点都有独立的角色。

image-20230703112842869

集群的脑裂问题

默认情况下,每个节点都是master eligible节点,因此一旦master节点宕机,其它候选节点会选举一个成为主节点。当主节点与其他节点网络故障时,可能发生脑裂问题。

例如一个集群中,主节点与其它节点失联:

此时,node2和node3认为node1宕机,就会重新选主:

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

为了避免脑裂,需要要求选票超过 ( eligible节点数量 + 1 )/ 2才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题。

分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

Elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

image-20230703160151743

说明:

•_routing默认是文档的id

•算法与分片数量有关,因此索引库一旦创建,分片数量就不能修改。

新增文档的流程:

image-20230703160239495

  1. 新增一个id=1的文档
  2. 对id做hash运算,假如得到的是2,则应该存储到shard-2
  3. shard-2的主分片在node3节点,将数据路由到node3
  4. 保存文档
  5. 同步给shard-2的副本replica-2,在node2节点
  6. 返回结果给coordinating-node节点

分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)假设一个集群结构如图:

现在,node1是主节点,其它两个节点是从节点。

2)由于发生特殊情况,node1发生了故障:

宕机后的第一件事,需要重新选主,例如选中了node2:

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/324476.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

政采网调试要求及常见问题解决方法

登录平台软件环境要求&#xff1a; 操作系统&#xff1a;建议Win10及以上&#xff08;Win10-64位专业版 版本号17134纯净安装版本&#xff09; 浏 览 器&#xff1a;IE11浏览器、谷歌120.0.6099.217&#xff08;64位正式版&#xff09;浏览器 必要软件&#xff1a;CA互联互通…

python高校舆情分析系统+可视化+情感分析 舆情分析+Flask框架(源码+文档)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

蓝桥杯省赛无忧 STL 课件19 第2次学长带练

01 讲解例题 02 复习和拓展课程知识

HDFS和MapReduce综合实训

文章目录 第1关&#xff1a;WordCount词频统计第2关&#xff1a;HDFS文件读写第3关&#xff1a;倒排索引第4关&#xff1a; 网页排序——PageRank算法 第1关&#xff1a;WordCount词频统计 测试说明 以下是测试样例&#xff1a; 测试输入样例数据集&#xff1a;文本文档test1…

上下左右视频转场模板PR项目工程文件 Vol. 05

pr转场模板&#xff0c;视频画面上下左右转场后带有一点点回弹效果的PR项目工程模板 Vol. 05 项目特点&#xff1a; 回弹效果视频转场&#xff1b; Premiere Pro 2020及以上&#xff1b; 适用于照片和视频转场&#xff1b; 适用于任何FPS和分辨率&#xff1b; 视频教程。 PR转场…

从0开始学Git指令(3)

从0开始学Git指令 因为网上的git文章优劣难评&#xff0c;大部分没有实操展示&#xff0c;所以打算自己从头整理一份完整的git实战教程&#xff0c;希望对大家能够起到帮助&#xff01; 远程仓库 Git是分布式版本控制系统&#xff0c;同一个Git仓库&#xff0c;可以分布到不…

训练官方源码RT-DETR(血泪的教训!严格按照官方流程!)

文章目录 参考链接1 配置环境2 配置数据路径3 配置训练参数4 可能的报错AttributeError: module torchvision has no attribute disable_beta_transforms_warning 参考链接 源码&#xff1a;https://github.com/lyuwenyu/RT-DETR详解RT-DETR网络结构/数据集获取/环境搭建/训练…

22.实战演练--记住密码和登录状态

在登录注册案例的基础上&#xff0c;实现一个相对完整的登录注册模块 (1).记住密码 (2).记住登录状态&#xff08;自动登录&#xff09; (3).注册成功&#xff0c;登录成功&#xff0c;退出登录时的页面跳转

【JavaScript】多种实现文件下载的工具类

【JavaScript】多种实现文件下载的工具类 方法一方法二方法三整体调用代码异常处理 示例以下载txt文件为例&#xff0c;代码已封装上传&#xff0c;可直接下载资源在服务器中使用。如有异常&#xff0c;可查看“异常处理”小节或评论区指出。 方法一 在html中&#xff0c;可以…

java中String的两种创建方法、字符串常量池

java中String的两种创建方法 字符串常量池 字符串常量池 String的两种创建方式: 第一种方式是在常量池中获取字符串对象。第二种方式是直接在堆空间创建一个新的字符串对象。 //先检查字符串常量池中有没有“apesource”,如果字符产常量池中没有&#xff0c;则创建一个&#x…

测绘资质工程测量乙级资质办理条件

新测绘资质分为10个专业&#xff1a; 1.大地测量 2.测绘航空摄影 3.摄影测量与遥感 4.工程测量 5.海洋测绘 6.界线与不动产测绘 7.地理信息系统工程 8.地图编制 9.导航电子地图制作 10.互联网地图服务。 新《测绘资质管理办法》和《测绘资质分类分级标准》&#xff…

【linux】查看Debian应用程序图标对应的可执行命令

在Debian系统中&#xff0c;应用程序图标通常与.desktop文件关联。您可以通过查看.desktop文件来找到对应的可执行命令。这些文件通常位于/usr/share/applications/或~/.local/share/applications/目录下。这里是如何查找的步骤&#xff1a; 1. 打开文件管理器或终端。 2. 导…

Windows下python用ctypes调用C++程序的动态链接库方法(vs2019)

Windows下python用ctypes调用C程序的动态链接库方法&#xff08;vs2019&#xff09; https://blog.csdn.net/qq_34288751/article/details/121939189 https://blog.csdn.net/iambinglan1/article/details/133790822

​HDD回暖于2024,与SSD决战于2028--part1

去年小编曾表达过类似观点&#xff0c;市场留给HDD的时间已经不多了&#xff0c;未来5年的发展决定了HDD的最终命运。 扩展阅读&#xff1a;HDD最后的冲刺&#xff1a;大容量硬盘的奋力一搏 SSD以其高速度和低延迟等优点&#xff0c;尤其在容量增长和每GB成本降低方面&#x…

基于Ubuntu22.04部署生产级K8S集群v1.27(规划和核心组件部署篇)

本文档主要根据k8s官网文档和其插件的官网文档&#xff0c;参考部分他人优秀经验&#xff0c;在实际操作中逐渐完成&#xff0c;比较详尽&#xff0c;适合在境内学习者和实践者参考。 实操环境基于VMware Workstation 17 pro&#xff0c;采用ubuntu22.04操作系统&#xff08;有…

【JAVA-打包jar】jar不能双击运行,Jar包找不到主类

我的问题比较简单&#xff0c;搞了一下午&#xff0c;查阅了很多教程&#xff0c;无意发现&#xff0c;居然是 jdk过期需要更新&#xff01; 气的吐血&#xff01; 所以不要废话&#xff0c;首先检查自己的环境变量和JDK&#xff01;&#xff01;&#xff01; 环境变量&…

STC8H8K蓝牙智能巡线小车——2. 点亮左右转弯灯与危险报警灯

任务调用示例 RTX 51 TNY 可做多任务调度&#xff0c;API较为简单。 /* 接口API */// 创建任务 extern unsigned char os_create_task (unsigned char task_id); // 结束任务 extern unsigned char os_delete_task (unsigned char task_id);// 等待 extern unsig…

MySQL 协议(非常详细适合小白学习)

MySQL 查询过程 MySQL 查询过程大致如下&#xff1a; 1&#xff09;客户端与服务器端建立连接&#xff1b; 2&#xff09;客户端登陆 MySQL&#xff1b; 3&#xff09;客户端向服务器端发起一条请求&#xff1b; 4&#xff09;服务器端先检查查询缓存&#xff0c;如果命中缓…

uniapp 权限申请插件(权限使用说明) Ba-Permissions

简介&#xff08;下载地址&#xff09; Ba-Permissions 是一款权限申请插件&#xff0c;支持权限使用说明弹窗&#xff0c;满足市场审核需求。支持自定义权限申请&#xff0c;也支持快速申请定位、相机、媒体、文件、悬浮窗等常见权限。 支持权限使用说明弹窗&#xff0c;满足…

new mars3d.graphic.PolygonEntity({计算平面几何中心点及贴地效果展示

1.Mars3d提供了几何图形相关点位的计算方法polyutil&#xff1a; PolyUtil - V3.7.0 - Mars3D API文档 2.通过api可以算出相关经纬度坐标&#xff0c;实现相关中心点的展示 &#xff1a; 功能示例(Vue版) | Mars3D三维可视化平台 | 火星科技 3.相关实现代码&#xff1a; fu…