FPN网络的实现原理详解

1 前言

FPN网络是一种常见的特征融合模块,在很多模型中都有运用,今天我们就结合代码和论文详细的搞清楚它到底是怎么一回事。

2 原理

在这里插入图片描述
原理直接看这一张图就可以了,很直观主要就是把对不同层的特征进行融合,重点还是在于代码的理解。

3 代码详解

import torch.nn as nn
import torch
import math
import torch.utils.model_zoo as model_zoo
from torchvision.ops import nms
# from retinanet.utils import BasicBlock, Bottleneck, BBoxTransform, ClipBoxes
# from retinanet.anchors import Anchors
# from retinanet import losses

class PyramidFeatures(nn.Module):
    def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
        super(PyramidFeatures, self).__init__()

        # upsample C5 to get P5 from the FPN paper
        self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
        #将C5的特征图尺寸放大2倍用于跟C4相加
        self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P5 elementwise to C4
        self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
        self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P4 elementwise to C3
        self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # "P6 is obtained via a 3x3 stride-2 conv on C5"
        self.P6 = nn.Conv2d(C5_size, feature_size, kernel_size=3, stride=2, padding=1)

        # "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6"
        self.P7_1 = nn.ReLU()
        self.P7_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=2, padding=1)

    def forward(self, inputs):
        #注意理解这里的inputs,其其表示的是一个列表
        C3, C4, C5 = inputs

        P5_x = self.P5_1(C5)
        P5_upsampled_x = self.P5_upsampled(P5_x)
        P5_x = self.P5_2(P5_x)

        P4_x = self.P4_1(C4)
        P4_x = P5_upsampled_x + P4_x
        P4_upsampled_x = self.P4_upsampled(P4_x)
        P4_x = self.P4_2(P4_x)

        P3_x = self.P3_1(C3)
        P3_x = P3_x + P4_upsampled_x
        P3_x = self.P3_2(P3_x)

        P6_x = self.P6(C5)

        P7_x = self.P7_1(P6_x)
        P7_x = self.P7_2(P7_x)

        return [P3_x, P4_x, P5_x, P6_x, P7_x]


if __name__ == '__main__':
    model = PyramidFeatures(32, 64, 96)
    print(model)
    ##这里假设输入是三层不同尺寸的特征图,输入的形状是[batch_size, 256, height, width]
    input = [torch.randn(1, 32, 640, 640), torch.randn(1, 64, 320, 320), torch.randn(1, 96, 160, 160)]
    out = model(input)
    print(out)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/323873.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MOS管驱动电流计算以及分立器件驱动电路

自记: 1.先根据mos数据手册查找参数,计算电流; 2.分立器件驱动电路图; 3.分立器件选择 仔细学,能看懂! 1.计算电流: 2.分立器件驱动电流:两种,第一种反向&#xff0c…

实践学习PaddleScience飞桨科学工具包

实践学习PaddleScience飞桨科学工具包 动手实践,在实践中学习!本项目可以在AIStudio平台一键运行!地址:https://aistudio.baidu.com/projectdetail/4278591 本项目第一次执行会报错,再执行一次即可。若碰到莫名其妙的…

Linux操作系统——重定向与缓冲区

1.理解一下struct file内核对象 上一篇文章(文件详解)我们一直在谈,一个文件要被访问就必须要先被打开,打开之前就必须要先把文件加载到内存,同时呢我们的操作系统为了管理文件也会为我们的文件创建相对应的struct fi…

低频信号发生器

前言 最近我快期末考试了,有点忙着复习。没时间写文章,不过学会了焊接 挺开心的所以买几套。 焊得怎么样这就是我们今天故事的主角“低频信号发生器”(由于要用到所以这是购买链接) 好,故事开始: 如何将…

基于Java (spring-boot)的社团管理系统

一、项目介绍 系统管理员的功能概述: ①用户管理 a.注册用户账户 当一个新用户注册时,用户填写基本信息并上传。用户基本信息包括账号、 姓名、密码、手机、地址等信息。 b.用户信息管理 管理员可以查看系统所有用户的基本信息,并修改和…

乡镇景区外卖需求的上涨,现在下场做外卖平台服务晚不晚?

如今,在田间地头点外卖已经变成了现实。随着外卖市场的发展,外卖消费的多样化场景逐渐显现,不仅在田间可以订餐外卖,出门旅行的任何地方都可以点上一份热腾腾的外卖送到面前。特别是从去年开始旅游经济恢复之后,外卖也…

【C初阶——内存函数】鹏哥C语言系列文章,基本语法知识全面讲解

本文由睡觉待开机原创,转载请注明出处。 本内容在csdn网站首发 欢迎各位点赞—评论—收藏 如果存在不足之处请评论留言,共同进步! 这里写目录标题 1.memcpy使用和模拟实现2.memmove的使用和模拟实现3.memset函数的使用4.memcpy函数的使用 1.m…

电阻表示方法和电路应用

电阻 电阻的表示方法 直标法 直标法是将电阻器的类别及主要技术参数的数值直接标注在电阻器表面上 通常用3位阿拉伯数字来标注片状电阻的阻值,其中第1位数代表阻值的第1位有效数;第2位数代表阻值的第二位有效数字;第3位数代表阻值倍率&…

力扣-刷MySQL(详细解析)

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 🍹文章作者技术和水平很有限,如果文中出现错误&am…

DataX的安装使用

DataX概述: DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL、Oracle、HDFS、Hive、OceanBase、HBase、OTS、ODPS 等各种异构数据源之间高效的数据同步功能。DataX采用了框架 插件 的模式,目前已开源,代…

救赎之道,就在其中

时光荏苒,不知不觉距离我踏入职场的第一天已经快一年了。最近也是看到平台举办年度征文活动,借此契机重新审视自己这两年来的成长历程,也希望对正在迷茫的人提供一些精神上的慰藉。 1.对未来的迷茫 如果要给两年前的自己打上标签&#xff0…

『 C++ 』AVL树详解 ( 万字 )

🦈STL容器类型 在STL的容器中,分为几种容器: 序列式容器(Sequence Containers): 这些容器以线性顺序存储元素,保留了元素的插入顺序。 支持随机访问,因此可以使用索引或迭代器快速访问任何位置的元素。 主要的序列式…

Hadoop 3.2.4 集群搭建详细图文教程

一、集群简介 Hadoop 集群包括两个集群:HDFS 集群、YARN 集群。两个集群逻辑上分离、通常物理上在一起;两个集群都是标准的主从架构集群。逻辑上分离 两个集群互相之间没有依赖、互不影响 物理上在一起 某些角色进程往往部署在同一台物理服务器上 MapR…

常见的反爬虫风控 | 验证码风控

一.前言 在当今信息技术迅速发展的背景下,网站和在线服务面临着日益增长的自动化访问威胁,这些大多来自于各类爬虫程序。这种大量的自动化访问不仅对网站的正常运行构成压力,还可能导致敏感数据的泄露,甚至被用于不正当竞争和恶意…

给 Linux 主机添加 SSH 双因子认证

GitHub:https://github.com/google/google-authenticator-android 在信息时代,服务器安全愈发成为首要任务。Linux 主机通过 ssh 方式连接,当存在弱密码的情况下,通过暴力破解的方式会很容易就被攻破了,本文将向你展示…

java的面向对象编程(oop)——static概述及初始单例设计模式

前言: 过了入门阶段,开始学习进阶语法了。每天进步一点点,打好基础,daydayup! 什么是面向对象编程(oop),可以看这篇 java的面向对象编程(oop)概述及案例 static概述 s…

亚信安慧AntDB超融合框架——数智化时代数据库管理的新里程碑

在信息科技飞速发展的时代,亚信科技AntDB团队提出了一项颠覆性的“超融合”理念,旨在满足企业日益增长的复杂混合负载和多样化数据类型的业务需求。这一创新性框架的核心思想在于融合多引擎和多能力,充分发挥分布式数据库引擎的架构优势&…

DBA技术栈(三):MySQL 性能影响因素

文章目录 前言一、影响MySQL性能的因素1.1 商业上的需求1.2 应用架构规划1.3 查询语句使用方式1.4 Schema的设计1.5 硬件环境 总结 前言 大部分人都一致认为一个数据库应用系统(这里的数据库应用系统概指所有使用数据库的系统)的性能瓶颈最容易出现在数…

什么是DDOS高防ip?DDOS高防ip是怎么防护攻击的

随着互联网的快速发展,网络安全问题日益突出,DDoS攻击和CC攻击等网络威胁对企业和网站的正常运营造成了巨大的威胁。为了解决这些问题,高防IP作为一种网络安全服务应运而生。高防IP通过实时监测和分析流量,识别和拦截恶意流量&…

Pixel手机进入工程模式、是否是Version版本?

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…