-
什么是神经网络
逻辑回归、感知机均只包含一个输入层以及一个输出层,只能处理线性可分问题。如果在输入层与输出层之间加入一层到多层的隐藏层,就会得到神经网络结构。
神经网络一般由输入层、隐藏层、输出层构成,下图展示了其一般结构:
隐藏层之所称之为隐藏层,是因为在训练集中,这些中间结点的准确值我们是不知道到的,也就是说你看不见它们在训练集中应具有的值。
神经网络通过在每个隐藏层后加入非线性的激活函数来使得模型具有非线性切分能力。
-
神经网络的计算过程
-
前向计算过程
对一个包含L个隐藏层(包括输入层)的神经网络,以输入层为0开始编号,则所有层的编号为 { 0 , 1 , . .
-