读写锁原理解读

目录

回顾什么是读写锁

t1 w.lock,t2 r.lock

t3 r.lock,t4 w.lock 

t1 w.unlock 

t2 r.unlock,t3 r.unlock 

写锁上锁流程 

 写锁释放流程

 读锁上锁流程

 读锁释放流程


回顾什么是读写锁

读写锁是一对互斥锁,分为读锁和写锁。读锁和写锁互斥,让一个线程在进行读操作时,不允许其他线程的写操作,但是不影响其他线程的读操作;当一个线程在进行写操作时,不允许任何线程进行读操作或者写操作。读写锁用的是同一个 Sycn 同步器,因此等待队列、state 等也是同一个

t1 w.lock,t2 r.lock

1) t1 成功上锁,流程与 ReentrantLock 加锁相比没有特殊之处,不同是写锁状态占了 state 的低 16 位,而读锁 使用的是 state 的高 16 位

 2)t2 执行 r.lock,这时进入读锁的 sync.acquireShared(1) 流程,首先会进入 tryAcquireShared 流程。如果有写 锁占据,那么 tryAcquireShared 返回 -1 表示失败

tryAcquireShared 返回值表示

-1 表示失败

0 表示成功,但后继节点不会继续唤醒

正数表示成功,而且数值是还有几个后继节点需要唤醒,读写锁返回 1

3)这时会进入 sync.doAcquireShared(1) 流程,首先也是调用 addWaiter 添加节点,不同之处在于节点被设置为Node.SHARED 模式而非 Node.EXCLUSIVE 模式,注意此时 t2 仍处于活跃状态

 

4)t2 会看看自己的节点是不是老二,如果是,还会再次调用 tryAcquireShared(1) 来尝试获取锁

5)如果没有成功,在 doAcquireShared 内 for (;;) 循环一次,把前驱节点的 waitStatus 改为 -1,再 for (;;) 循环一 次尝试 tryAcquireShared(1) 如果还不成功,那么在 parkAndCheckInterrupt() 处 park

t3 r.lock,t4 w.lock 

这种状态下,假设又有 t3 加读锁和 t4 加写锁,这期间 t1 仍然持有锁,就变成了下面的样子

t1 w.unlock 

这时会走到写锁的 sync.release(1) 流程,调用 sync.tryRelease(1) 成功,变成下面的样子

接下来执行唤醒流程 sync.unparkSuccessor,即让老二恢复运行,这时 t2 在 doAcquireShared 内parkAndCheckInterrupt() 处恢复运行 这回再来一次 for (;;) 执行 tryAcquireShared 成功则让读锁计数加一

这时 t2 已经恢复运行,接下来 t2 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点

事情还没完,在 setHeadAndPropagate 方法内还会检查下一个节点是否是 shared,如果是则调用doReleaseShared() 将 head 的状态从 -1 改为 0 并唤醒老二,这时 t3 在 doAcquireShared 内parkAndCheckInterrupt() 处恢复运行

这回再来一次 for (;;) 执行 tryAcquireShared 成功则让读锁计数加一

这时 t3 已经恢复运行,接下来 t3 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点

下一个节点不是 shared 了,因此不会继续唤醒 t4 所在节点

t2 r.unlock,t3 r.unlock 

 t2 进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,但由于计数还不为零

t3 进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,这回计数为零了,进入doReleaseShared() 将头节点从 -1 改为 0 并唤醒老二,即

之后 t4 在 acquireQueued 中 parkAndCheckInterrupt 处恢复运行,再次 for (;;) 这次自己是老二,并且没有其他 竞争,tryAcquire(1) 成功,修改头结点,流程结束

 

写锁上锁流程 

static final class NonfairSync extends Sync {
    // ... 省略无关代码
    // 外部类 WriteLock 方法, 方便阅读, 放在此处
    public void lock() {
        sync.acquire(1);
    }

         // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        if (
            // 尝试获得写锁失败
                !tryAcquire(arg) &&
            // 将当前线程关联到一个 Node 对象上, 模式为独占模式
            // 进入 AQS 队列阻塞
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryAcquire(int acquires) {
    // 获得低 16 位, 代表写锁的 state 计数
        Thread current = Thread.currentThread();
        int c = getState();
        int w = exclusiveCount(c);
        if (c != 0) {
            if (
            // c != 0 and w == 0 表示有读锁, 或者
                    w == 0 ||
                // 如果 exclusiveOwnerThread 不是自己
                            current != getExclusiveOwnerThread()
            ) {
            // 获得锁失败
                return false;
            }
            // 写锁计数超过低 16 位, 报异常
            if (w + exclusiveCount(acquires) > MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // 写锁重入, 获得锁成功
            setState(c + acquires);
            return true;
        }
        if (
            // 判断写锁是否该阻塞, 或者
                writerShouldBlock() ||
                // 尝试更改计数失败
                        !compareAndSetState(c, c + acquires)
        ) {
        // 获得锁失败
            return false;
        }
        // 获得锁成功
        setExclusiveOwnerThread(current);
        return true;
    }

    // 非公平锁 writerShouldBlock 总是返回 false, 无需阻塞
    final boolean writerShouldBlock() {
        return false;
    }
}

 写锁释放流程

static final class NonfairSync extends Sync {
    // ... 省略无关代码
// WriteLock 方法, 方便阅读, 放在此处
    public void unlock() {
        sync.release(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean release(int arg) {
    // 尝试释放写锁成功
        if (tryRelease(arg)) {
        // unpark AQS 中等待的线程
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        int nextc = getState() - releases;
        // 因为可重入的原因, 写锁计数为 0, 才算释放成功
        boolean free = exclusiveCount(nextc) == 0;
        if (free) {
            setExclusiveOwnerThread(null);
        }
        setState(nextc);
        return free;
    }
}

 读锁上锁流程

static final class NonfairSync extends Sync {
    // ReadLock 方法, 方便阅读, 放在此处
    public void lock() {
        sync.acquireShared(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquireShared(int arg) {
        // tryAcquireShared 返回负数, 表示获取读锁失败
        if (tryAcquireShared(arg) < 0) {
            doAcquireShared(arg);
        }
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final int tryAcquireShared(int unused) {
        Thread current = Thread.currentThread();
        int c = getState();
        // 如果是其它线程持有写锁, 获取读锁失败
        if (
                exclusiveCount(c) != 0 &&
                        getExclusiveOwnerThread() != current
        ) {
            return -1;
        }
        int r = sharedCount(c);
        if (
            // 读锁不该阻塞(如果老二是写锁,读锁该阻塞), 并且
                !readerShouldBlock() &&
            // 小于读锁计数, 并且
                        r < MAX_COUNT &&
                // 尝试增加计数成功
                        compareAndSetState(c, c + SHARED_UNIT)
        ) {
// ... 省略不重要的代码
            return 1;
        }
        return fullTryAcquireShared(current);
    }

    // 非公平锁 readerShouldBlock 看 AQS 队列中第一个节点是否是写锁
// true 则该阻塞, false 则不阻塞
    final boolean readerShouldBlock() {
        return apparentlyFirstQueuedIsExclusive();
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
// 与 tryAcquireShared 功能类似, 但会不断尝试 for (;;) 获取读锁, 执行过程中无阻塞
    final int fullTryAcquireShared(Thread current) {
        HoldCounter rh = null;
        for (; ; ) {
            int c = getState();
            if (exclusiveCount(c) != 0) {
                if (getExclusiveOwnerThread() != current)
                    return -1;
            } else if (readerShouldBlock()) {
// ... 省略不重要的代码
            }
            if (sharedCount(c) == MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            if (compareAndSetState(c, c + SHARED_UNIT)) {
// ... 省略不重要的代码
                return 1;
            }
        }
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    private void doAcquireShared(int arg) {
// 将当前线程关联到一个 Node 对象上, 模式为共享模式
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                if (p == head) {
                    // 再一次尝试获取读锁
                    int r = tryAcquireShared(arg);
                    // 成功
                    if (r >= 0) {
            // (一)
            // r 表示可用资源数, 在这里总是 1 允许传播
            //(唤醒 AQS 中下一个 Share 节点)
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (
// 是否在获取读锁失败时阻塞(前一个阶段 waitStatus == Node.SIGNAL)
                        shouldParkAfterFailedAcquire(p, node) &&
// park 当前线程
                                parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

        // (一) AQS 继承过来的方法, 方便阅读, 放在此处
    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        // 设置自己为 head
        setHead(node);
        // propagate 表示有共享资源(例如共享读锁或信号量)
        // 原 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
        // 现在 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
                (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
        // 如果是最后一个节点或者是等待共享读锁的节点
            if (s == null || s.isShared()) {
            // 进入 (二)
                doReleaseShared();
            }
        }
    }
    // (二) AQS 继承过来的方法, 方便阅读, 放在此处
    private void doReleaseShared() {
    // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE, 为了解决 bug, 见后面分析
        for (;;) {
            Node h = head;
        // 队列还有节点
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue; // loop to recheck cases
            // 下一个节点 unpark 如果成功获取读锁
            // 并且下下个节点还是 shared, 继续 doReleaseShared
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                        !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue; // loop on failed CAS
            }
            if (h == head) // loop if head changed
                break;
        }
    }
}

 读锁释放流程

static final class NonfairSync extends Sync {
    // ReadLock 方法, 方便阅读, 放在此处
    public void unlock() {
        sync.releaseShared(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryReleaseShared(int unused) {
        // ... 省略不重要的代码
        for (;;) {
            int c = getState();
            int nextc = c - SHARED_UNIT;
            if (compareAndSetState(c, nextc)) {
        // 读锁的计数不会影响其它获取读锁线程, 但会影响其它获取写锁线程
        // 计数为 0 才是真正释放
                return nextc == 0;
            }
        }
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    private void doReleaseShared() {
        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
            // 如果有其它线程也在释放读锁,那么需要将 waitStatus 先改为 0
        // 防止 unparkSuccessor 被多次执行
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue; // loop to recheck cases
                    unparkSuccessor(h);
                }
            // 如果已经是 0 了,改为 -3,用来解决传播性,见后文信号量 bug 分析
                else if (ws == 0 &&
                        !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue; // loop on failed CAS
            }
            if (h == head) // loop if head changed
                break;
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32279.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《kafka 核心技术与实战》课程学习笔记(八)

无消息丢失配置怎么实现&#xff1f; Kafka 只对“已提交”的消息&#xff08;committed message&#xff09;做有限度的持久化保证。 第一个核心要素是“已提交的消息”。 当 Kafka 的若干个 Broker 成功地接收到一条消息并写入到日志文件后&#xff0c;它们会告诉生产者程序…

知识图谱项目——红色文化之张学良人物知识图谱(Neo4j+vue+flask+mysql实现)

张学良人物简史知识图谱_说明文档 本项目为人工智能专业大三知识图谱课程期末作业。意在完成一个以张学良为背景的红色文化类知识图谱。文末放上本项目的代码地址。 文章目录 张学良人物简史知识图谱_说明文档:rocket:前端:rocket:后端:rocket:中间件:rocket:数据库:rocket:服…

Linux常用命令——free命令

在线Linux命令查询工具 free 显示内存的使用情况 补充说明 free命令可以显示当前系统未使用的和已使用的内存数目&#xff0c;还可以显示被内核使用的内存缓冲区。 语法 free(选项)选项 -b # 以Byte为单位显示内存使用情况&#xff1b; -k # 以KB为单位显示内存使用情况…

【云原生】二进制部署k8s集群(中)搭建node节点

连接上文 在上文已经成功部署了etcd分布式数据库、master01节点&#xff0c; 本文将承接上文的内容&#xff0c;继续部署Kubernetes集群中的 worker node 节点和 CNI 网络插件 1. 部署 Worker Node 组件 1.1 work node 组件部署前需了解的节点注册机制 kubelet 采用 TLS Bo…

设计模式-05.01-行为型-观察者模板

观察者模式【常用】 我们常把 23 种经典的设计模式分为三类&#xff1a;创建型、结构型、行为型。前面我们已经学习了创建型和结构型&#xff0c;从今天起&#xff0c;我们开始学习行为型设计模式。我们知道&#xff0c;创建型设计模式主要解决“对象的创建”问题&#xff0c;…

JavaWeb之tomcarHTTP

1 DOM4j Xml解析 1.1 JAXP  JDK内置&#xff0c;不需要导入第三方jar包&#xff0c;简单工具优先选择。  支持两种解析方式&#xff1a;DOM、SAX 1.1.1 JAXP—DOM 加载xml 生成一个DOM树。获得整个文档的描述对象Document 解析 api 获得工厂 DocumentBuilderFactory –》 …

Android adb shell命令捕获systemtrace

Android adb shell命令捕获systemtrace (1)抓取trace文件&#xff1a; adb shell perfetto -o /data/misc/perfetto-traces/trace_file.perfetto-trace -t 20s sched freq idle am wm gfx view binder_driver hal dalvik camera input res memory -t 时长&#xff0c;20s&a…

通过使用Mybatis插件来实现数据的分页功能

目录 背景一、SpringBoot的后端1、手动拼接SQL来实现2、使用Mybatis插件来实现 二、Vue-cli的前端:请求响应跟踪 三、在使用Mybatis插件进行多表查询(表数大于2)出现的问题1. SQL解决2.后端查询方式改变成嵌套查询 四、 分页总结 背景 分页: 如果一次性的查询全部数据, 响应时…

高级数据结构——平衡二叉树(AVL树)

目录 1. 底层结构 2. AVL数的概念 3. AVL树节点的定义 4. 基本框架 5. AVL树的插入 6. AVL树的旋转 6.1 左单旋 6.2 右单旋 6.3 左右双旋 6.4 右左双旋 7. AVL树的验证 8. AVL树的查找 9. AVL树的删除 10. AVL树的性能 11. 总代码 11.1 AVLTree 11.2 Test.c…

SuperMap GIS基础产品移动GIS FAQ集锦(3)

SuperMap GIS基础产品移动GIS FAQ集锦&#xff08;3&#xff09; 【iMobile】网络分析中设置权值字段&#xff0c;如何添加多个权值字段&#xff1f; 【解决办法】通过权值字段集合类&#xff08;WeightFieldInfos&#xff09;设置&#xff0c;该类是权值字段信息对象&#x…

【AI】Stable-Diffusion-WebUI使用指南

注&#xff1a;csdn对图片有审核&#xff0c;审核还很奇葩&#xff0c;线稿都能违规&#xff0c;为保证完整的阅读体验建议移步至个人博客阅读 最近AI绘画实现了真人照片级绘画水准&#xff0c;导致AI绘画大火&#xff0c;公司也让我研究研究&#xff0c;借此机会正好了解一下…

django旅游推荐系统-计算机毕设 附源码82884

django旅游推荐系统 摘 要 随着社会的快速发展和人们生活水平的不断提高&#xff0c;旅游已逐渐成为人们生活的重要组成部分&#xff0c;用户能够获取旅游信息的渠道也随信息技术的广泛应用而增加。大量未经过滤的信息在展示给用户的同时&#xff0c;也淹没了用户真正感兴趣的信…

配置NIS服务器及客户端

在服务端安装所需软件包 设置主机名和NIS域名 编辑 NIS服务器主配置文件 最下面编辑访问控制 建立测试用户 配置NFS&#xff0c;否则客户端切换用户时&#xff0c;用户没有家目录 安装NFS所需软件包 Nfs-utils 给两个共享目录权限&#xff0c;编辑NFS配制文件 共享两个目录 重…

【从零开始学习C++ | 第二十一篇】C++新增特性 (上)

目录 前言&#xff1a; 委托构造函数&#xff1a; 类内初始化&#xff1a; 空指针&#xff1a; 枚举类&#xff1a; 总结&#xff1a; 前言&#xff1a; C的学习难度大&#xff0c;内容繁多。因此我们要及时掌握C的各种特性&#xff0c;因此我们更新本篇文章&#xff0c;向…

【数据管理架构】什么是 OLTP?

OLTP&#xff08;在线事务处理&#xff09;支持在 ATM 和在线银行、收银机和电子商务以及我们每天与之交互的许多其他服务背后进行快速、准确的数据处理。 什么是 OLTP&#xff1f; OLTP 或在线事务处理允许大量人员&#xff08;通常通过 Internet&#xff09;实时执行大量数据…

【SpringCloud-5】gateway网关

网关是干啥用的就不用再说了。 sringcloud中的网关&#xff0c;第一代是zuul&#xff0c;但是性能比较差&#xff08;1.x是阻塞式的&#xff0c;2.x是基于Netty的&#xff09;&#xff0c;然后有了第二代GateWay&#xff0c;基于Reactor模型 异步非阻塞。 springcloud网关就是一…

C++智能指针

RAII RAII&#xff08;Resource Acquisition Is Initialization&#xff09;是一种利用对象生命周期来控制程序资源的技术 不需要显示的释放资源对象的资源在其生命周期类保持有效 通常控制的资源&#xff1a;动态申请的内存、文件描述符、互斥量、网络连接等 在对象构造时…

多线程/std::thread线程退出方式详解

文章目录 概述不 join 也不 detach执行了detach并不能万事大吉建议使用 join 函数 概述 这里默认你已经了解 std::thread 类的基本使用&#xff0c;和WinAPI多线程编程中 “如何优雅的退出线程” 等相关知识。阅读该文前&#xff0c;建议先看看《多线程 /C 11 std::thread 类深…

python、pyqt5实现人脸检测、性别和年龄预测

摘要&#xff1a;这篇博文介绍基于opencv&#xff1a;DNN模块自带的残差网络的人脸、性别、年龄识别系统&#xff0c;系统程序由OpenCv, PyQt5的库实现。如图系统可通过摄像头获取实时画面并识别其中的人脸表情&#xff0c;也可以通过读取图片识别&#xff0c;本文提供完整的程…

【IIS建站教程】windows本地搭建web服务,内网穿透发布公网访问

✨个人主页&#xff1a;bit me&#x1f447; 目 录 &#x1f43e;1.前言&#x1f490;2.Windows网页设置&#x1f338;2.1 Windows IIS功能设置&#x1f337;2.2 IIS网页访问测试 &#x1f340;3. Cpolar内网穿透&#x1f339;3.1 下载安装Cpolar&#x1f33b;3.2 Cpolar云端设…