15-deoxy-Δ12,14-PGJ2(15-d-PGJ2)是PGD2的最终脱水产物之一,通过中间体Δ12-PGJ2形成。生理条件下,15-d-PGJ2存在于体液中,浓度介于10^(-12)至10^(-9)M,但在感染和炎症等应激条件下会急剧增加。在细胞类型和浓度的影响下,15-d-PGJ发挥促进和抗炎症作用,其中许多作用是通过与过氧化物酶体增殖剂激活受体(PPAR-γ)的γ异构体结合而介导的。15-d-PGJ2似乎通过一种与PPAR-γ无关的机制诱导HO-1的表达,该机制由活性氧(ROS)的产生介导。
Enzo Life Sciences的15-脱氧-Δ12,14-前列腺素J2 ELISA试剂盒是一种比色竞争法酶联免疫检测试剂盒,可在5小时内得到检测结果,相比GC/MS 分析节省时间且耗时少得多。欣博盛生物作为Enzo Life Sciences授权中国一级代理,可提供该产品,欢迎咨询。
产品特色
◆ 灵敏度高,可测量低至36.8 pg/ml的15-deoxy-Δ12,14-PGJ2
◆ 检测快速,较GC/MS分析耗时少得多
◆ 易于使用的即用型液体颜色编码试剂,可减少错误
◆ 优于半定量Western blot分析的完全定量检测
产品信息
产品货号 | ADI-900-023/ ADI-901-023 |
产品名称 | 15-deoxy-Δ12,14-PGJ2 ELISA kit(15-脱氧-Δ12,14-前列腺素J2 ELISA试剂盒)/欣博盛生物 |
规格 | 96 wells/ 5x96 wells |
其他名称 | 15-deoxy-Δ12,14-Prostaglandin J2 |
灵敏度 | 36.8 pg/ml |
检测范围 | 195 - 200,000 pg/ml |
检测时间 | 5 hours |
应用 | ELISA, Colorimetric detection |
检测波长 | 405 nm |
样本类型 | 细胞培养上清,血浆,唾液和尿液 |
适用种属 | 不限种属 |
试剂盒组分 | GxR IgG Microtiter plate, Conjugate, Antibody, Assay buffer, Wash buffer concentrate, Standard, pNpp Substrate, Stop solution |
标曲示例
部分产品引用文献
1. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia: L. Račková, et al.; Toxicol. Appl. Pharmacol. 447, 116084 (2022)
2. Fluoxetine‐induced hepatic lipid accumulation is mediated by prostaglandin endoperoxide synthase 1 and is linked to elevated 15‐deoxy‐Δ12, 14PGJ2: A. Ayyash, et al.; J. Appl. Toxicol. 4272, 1002 (2021)
3. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis: C.D. Wiley, et al.; Cell Metab. 33, 1124 (2021)
4. Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation: K. Brami-Cherrier, et al.; Nat. Commun. 11, 4448 (2020)
5. Thymopentin improves the survival of septic mice by promoting the production of 15-deoxy-prostaglandin J2 and activating the PPARγ signaling pathway: Y. Zhang, et al.; FASEB J. 34, 11772 (2020)
6. Apolipoprotein D overexpression alters hepatic prostaglandin and omega fatty acid metabolism during the development of a non-inflammatory hepatic steatosis: F. Desmarais, et al.; Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 522 (2019)
7. Association of chronic inflammation and perceived stress with abnormal functional connectivity in brain areas involved with interoception in hepatitis C patients: G. Oriolo, et al.; Brain Behav. Immun. 80, 204 (2019)
8. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis: Y.B. Kim, et al.; Cell. Mol. Immunol. 16, 851 (2019)
9. Arachidonic acid induces ARE/Nrf2-dependent heme oxygenase-1 transcription in rat brain astrocytes: C.C. Lin, et al.; Mol. Neurobiol. 55, 3328 (2018)
10. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats: J. Zhou, et al.; J. Cell Mol. Med. 20, 1706 (2016)
11. Implications of a genetically determined nitric oxide deficit for endothelial cell-leukocyte interaction and cardiovascular disease: I. Kadiyska; (2016)
12. CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis: M. Ishii, et al.; J. Immunol. 188, 5655 (2012)
13. Choroidal involution is a key component of oxygen-induced retinopathy: Z. Shao, et al.; Invest. Ophthalmol. Vis. Sci. 52, 6238 (2011)
14. Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1: P. Wang, et al.; FASEB J. 25, 3401 (2011)
15. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA: Y. Ye, et al.; Am. J. Physiol. Heart Circ. Physiol. 298, H1454 (2010)