C++力扣题目236--二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

提示:

  • 树中节点数目在范围 [2, 105] 内。
  • -109 <= Node.val <= 109
  • 所有 Node.val 互不相同 。
  • p != q
  • p 和 q 均存在于给定的二叉树中。

思路

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从低到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

这一点是很多录友容易忽略的,在下面的代码讲解中,可以再去体会。

递归三部曲:

  • 确定递归函数返回值以及参数

需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

代码如下:

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)

  • 确定终止条件

遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到,那么中节点的处理逻辑,下面讲解。

代码如下:

if (root == q || root == p || root == NULL) return root;

  • 确定单层递归逻辑

值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值? (opens new window)中说了 递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

搜索一条边的写法:

if (递归函数(root->left)) return ;

if (递归函数(root->right)) return ;

搜索整个树写法:

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

看出区别了没?

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

就像图中一样直接返回7。

但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。

因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

所以此时大家要知道我们要遍历整棵树。知道这一点,对本题就有一定深度的理解了。

那么先用left和right接住左子树和右子树的返回值,代码如下:

TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然

这里有的同学就理解不了了,为什么left为空,right不为空,目标节点通过right返回呢?

如图:

236.二叉树的最近公共祖先1

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去!

这里也很重要,可能刷过这道题目的同学,都不清楚结果究竟是如何从底层一层一层传到头结点的。

那么如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

代码如下:

if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else  { //  (left == NULL && right == NULL)
    return NULL;
}

那么寻找最小公共祖先,完整流程图如下:

236.二叉树的最近公共祖先2

从图中,大家可以看到,我们是如何回溯遍历整棵二叉树,将结果返回给头结点的!

整体代码如下:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == q || root == p || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if (left != NULL && right != NULL) return root;

        if (left == NULL && right != NULL) return right;
        else if (left != NULL && right == NULL) return left;
        else  { //  (left == NULL && right == NULL)
            return NULL;
        }

    }
};

稍加精简,代码如下:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == q || root == p || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if (left != NULL && right != NULL) return root;
        if (left == NULL) return right;
        return left;
    }
};

#总结

这道题目刷过的同学未必真正了解这里面回溯的过程,以及结果是如何一层一层传上去的。

那么我给大家归纳如下三点

  1. 求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。

  2. 在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。

  3. 要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。

可以说这里每一步,都是有难度的,都需要对二叉树,递归和回溯有一定的理解。

本题没有给出迭代法,因为迭代法不适合模拟回溯的过程。理解递归的解法就够了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/319592.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录 Leetcode349. 两个数组的交集

题目&#xff1a; 代码(首刷看解析 2024年1月14日&#xff09;&#xff1a; class Solution { public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {unordered_set<int> a;unordered_set<int> res;for(int i 0…

每日一题——LeetCode1189.气球的最大数量

方法一 个人方法&#xff1a; 统计text字符串中b、a、l、o、n 这几个字符出现的次数 l和n需要两个才能拼成一个balloon&#xff0c;所以碰到l和o加1&#xff0c;其他字符加2 最后求出出现次数最少的那个字符再除以2就是能拼凑成的单词数量&#xff0c;避免出现小数要使用向下…

近红外光谱分析技术与基于深度学习的化学计量学方法

郁磊【副教授】&#xff1a;主要从事AI人工智能与大数据分析等相关研究&#xff0c;长期致力于人工智能与近红外生物医学工程等领域融合&#xff0c;主持并完成多项科研课题。著有《神经网络43个案例分析》等书籍。 // 讲座内容 1、近红外光谱基本理论、近红外光谱仪基本原理…

clickhouse join查询算法

算法对比&#xff1a; 使用方法&#xff1a; SELECT town,max(price) AS max_price,any(population) AS population FROM uk_xxx_paid JOIN uk_xxx_table ON lower(uk_price_paid.town) lower(uk_populations_table.city) GROUP BY town ORDER BY max_price DESC SETTINGS jo…

对接苹果CMS芒果影视APPV1.0(附安装教程+源码支持多端)内置采集脚本

目录 概述1. 演示效果1.1 视频演示1.2 图文演示1.2.1 首页1.2.2 专题页1.2.3 搜索1.2.4 观影 2. 支持功能3. 插件和框架4. 部署方法4.1 后端4.1.1 准备工具4.1.2创建站点4.1.3 上传后端代码到服务器4.1.4 导入数据库4.1.5 配置数据库信息4.1.6访问后台管理系统 4.2 前端4.2.1 准…

影响邮件打开率的因素有哪些?

影响邮件打开率得因素有很多&#xff0c;比如说邮件地址的有效性、邮件标题、定位人群、发送频率或者时间等因素。目前来讲&#xff0c;我们可以通过技术的手段改善邮件的到达率&#xff0c;但是邮件的打开率取决于收件人本身&#xff0c;所以发件人的发送动作如何在很大程度上…

为什么光刻要用黄光

光刻是集成电路&#xff08;IC或芯片&#xff09;制造中的重要工艺之一。简单来说&#xff0c;它是通过使用光掩膜和光刻胶在基板上复制电路图案的过程。 基板将涂覆硅二氧化层绝缘层和光刻胶。光刻胶在被紫外光照射后可以容易地用显影剂溶解&#xff0c;然后在腐蚀后&#xf…

MT1138-MT1150总结

1. 判断闰年方法 year%40&&year%400&#xff01;0||year%4000 #include<bits/stdc.h> using namespace std;int day(int year,int mouth){if(mouth1||mouth3||mouth5||mouth7||mouth8||mouth10||mouth12){return 31;}else if(mouth4||mouth6||mouth9||mouth11)…

【促销定价】背后的算法技术 2 - 数据预处理生成

【促销定价】背后的算法技术 2 - 数据预处理生成 01 数据探查02 数据清洗03 数据聚合04 数据补全05 小结参考文献 导读&#xff1a;在日常生活中&#xff0c;我们经常会遇见线上/线下商家推出各类打折、满减、赠品、新人价、优惠券、捆绑销售等促销活动。一次成功的促销对于消费…

【Linux 内核源码分析笔记】系统调用

在Linux内核中&#xff0c;系统调用是用户空间程序与内核之间的接口&#xff0c;它允许用户空间程序请求内核执行特权操作或访问受保护的内核资源。系统调用提供了一种安全可控的方式&#xff0c;使用户程序能够利用内核功能而不直接访问底层硬件。 系统调用&#xff1a; 通过…

Azure Machine Learning - 视频AI技术

Azure AI 视频索引器是构建在 Azure 媒体服务和 Azure AI 服务&#xff08;如人脸检测、翻译器、Azure AI 视觉和语音&#xff09;基础之上的一个云应用程序&#xff0c;是 Azure AI 服务的一部分。 有了 Azure 视频索引器&#xff0c;就可以使用 Azure AI 视频索引器视频和音频…

Fastadmin上传图片服务端压缩图片,实测13.45M压缩为29.91K

先前条件&#xff1a;第一步安装compose&#xff0c;已安装忽略。 先上截图看效果 一、在fastadmin的根目录里面输入命令安装think-image composer require topthink/think-image二、找到公共上传类&#xff0c;application/common/library/Upload.php&#xff0c;在最下面…

Java SE入门及基础(12)

do-while 循环 1. 语法 do { //循环操作 } while ( 循环条件 ); 2. 执行流程图 3. 案例 从控制台录入学生的成绩并计算总成绩&#xff0c;输入0 时退出 4. 代码实现 public static void main ( String [] args ) { Scanner sc new Scanner ( System . in )…

大面积光源HUD阳光倒灌实验装置太阳光模拟器

背景 1.根据现在市场上一些量产的hud的结构和原理可知&#xff0c;hud中最重要的零件之一就是凹面镜(自由曲面)&#xff0c;hud利用凹面镜放大投影的光学原理进行投影成像。当发生阳光倒灌时&#xff0c;太阳光沿着hud正常工作时成像的逆光路&#xff0c;通过挡风玻璃-凹面镜-…

豆包ai介绍

豆包是字节跳动基于云雀模型开发的AI工具&#xff0c;具有强大的语言处理能力和广泛的应用场景&#xff0c;无论是在学习、工作、生活中&#xff0c;都能派上用场。 豆包可以帮助打工人和创作者提升效率&#xff0c;完成各种工作任务&#xff0c;又能扮演各类AI角色进行高情商…

MySQL简介、安装及使用

一、MySQL简介 1、MySQL的介绍 MySQL数据库管理系统由瑞典的DataKonsultAB公司研发&#xff0c;该公司被Sun公司收购&#xff0c;现在Sun公司又被Oracle公司收购&#xff0c;因此MySQL目前属于 Oracle 旗下产品。 MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言…

【Python学习】Python学习17- File(文件) 方法

目录 [TOC](【Python学习】Python学习17- File(文件) 方法) 文章所属专区 Python学习 前言 本章节主要说明Python文件操作的具体说明 open()方法 Python open() 方法用于打开一个文件&#xff0c;并返回文件对象&#xff0c;在对文件进行处理过程都需要使用到这个函数&#…

CnosDB的数据更新和删除

在时序数据中&#xff0c;可能会出现一些数据错误或者异常情况&#xff0c;这时候就需要能够对数据进行清洗修复。如果不支持更新操作&#xff0c;将会变得非常困难。另外&#xff0c;一些业务场景可能会需要对已有数据进行调整&#xff0c;比如设备信息发生变化等。支持数据更…

Python开源项目周排行 2024年第2周

点赞关注转发三连&#xff0c;您的支持是我的动力&#xff01; Python 趋势周报&#xff0c;按周浏览往期 GitHub,Gitee 等最热门的Python开源项目&#xff0c;入选的项目主要参考GitHub Trending,部分参考了Gitee和其他。排名不分先后&#xff0c;都是当周相对热门的项目。 …

12.3在应用层使用SPI总线

在SPI总线驱动框架中提供了一个spidev 的字符设备驱动&#xff0c;在应用层可以通过它来访问SPI总线。 应用层访问SPI总线的步骤 编写spidev设备树节点&#xff0c;在SPI总线的设备树节点下添加spidev设备的树节点&#xff0c;设备树示例如下所示&#xff1a; spidev0: spid…