探索商超货架场景目标检测性能,基于YOLOv8【n/s/m/l/x】全系列参数模型开发构建商超货架场景下亨氏米粉食品种类检测识别系统

在前面的系列博文中,我们陆续应用实践开发了很多有趣的项目,但是在密集排布场景下如商超购物场所内货架上货物种类目标检测模型的开发我们则少有涉及,正值周末,本文的主要目的就是想要实践构建这一场景下的目标检测模型,这里我们构建的数据集以商超购物货架上的亨氏米粉食品种类检测为基准,首先看下实例效果:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

简单看下实例数据情况:

实例标注数据实例如下:

16 0.596296 0.402778 0.075926 0.076389
2 0.52037 0.495486 0.087037 0.08125
2 0.606019 0.492014 0.082407 0.08125
38 0.524074 0.582292 0.081481 0.08125
38 0.599074 0.577431 0.075926 0.079861
10 0.673148 0.577778 0.074074 0.079167
10 0.753704 0.5875 0.075926 0.069444
3 0.49537 0.668056 0.085185 0.073611
9 0.573611 0.66875 0.073148 0.072222
9 0.647222 0.673264 0.074074 0.079861
22 0.727315 0.672917 0.084259 0.084722
1 0.569907 0.763194 0.078704 0.072222
1 0.648611 0.762153 0.080556 0.08125
7 0.731481 0.7625 0.07963 0.072222
14 0.725463 0.876389 0.099074 0.077778
14 0.636111 0.873264 0.085185 0.078472
15 0.549074 0.871875 0.090741 0.079861
0 0.458333 0.873611 0.07963 0.076389

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 39   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置

综合对比来看:相比之下,n系列模型最为轻量级效果也最差,被其他四个系列的模型拉开了明显的差距,其他四个模型在30个epoch之前还有差距,之后就达到了近乎相近的水平,综合考虑模型参数量,这里选择s系列的模型作为线上推理模型。

接下来我们详细看下s系列模型的结果:

【PR曲线】

【Batch实例】

【训练可视化】

感兴趣的话也都可以试试看!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/318741.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

QSpace:Mac上的简洁高效多窗格文件管理器

在Mac用户中,寻找一款能够提升文件管理效率的工具是常见的需求。QSpace,一款专为Mac设计的文件管理器,以其简洁的界面、高效的多窗格布局和丰富的功能,为用户提供了一个全新的文件管理体验。 QSpace:灵活与功能丰富的结…

MySQL面试题 | 05.精选MySQL面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Qt打包程序

添加链接描述

Ps:何时需要转换为智能对象

智能对象 Smart Objects提供了广泛的灵活性和控制能力,特别是在处理复杂的合成、重复元素或需要非破坏性编辑的项目中。 ◆ ◆ ◆ 何时需要转换为智能对象 1、当需要对图像进行缩放、旋转等变换时。 涉及到的 Photoshop 命令包括:变换、自由变换、操控…

SwiftUI之深入解析如何使用SwiftUI Charts创建折线图

一、简单折线图 苹果在 WWWDC 2022 上推出了 SwiftUI 图表,这使得在 SwiftUI 视图中创建图表变得异常简单。图表是以丰富的格式呈现可视化数据的一种很好的方式,而且易于理解。本文展示了如何用比以前从头开始创建同样的折线图少得多的代码轻松创建折线…

【深度学习】Anaconda3 + PyCharm 的环境配置 3:GitHub 项目运行前的环境配置

前言 文章性质:实操记录 💻 主要内容:主要记录了运行 GitHub 项目前的环境配置过程,包括创建并激活新的虚拟环境、安装 torch 和 torchvision,在 PyCharm 中使用新建的虚拟环境,根据项目源代码提供的 requi…

Xtuner大模型微调

Xtuner大模型微调 一、课程笔记 文档链接:https://github.com/InternLM/tutorial/blob/main/xtuner/README.md 视频链接: https://www.bilibili.com/video/BV1yK4y1B75J/ 大模型微调 大模型的训练利用了各类数据,可以说是一个通才&#xff…

Sqoop的增量数据加载策略与示例

当使用Apache Sqoop进行数据加载时,增量数据加载策略是一个关键的话题。增量加载可以仅导入发生变化的数据,而不必每次都导入整个数据集,这可以显著提高任务的效率。本文将深入探讨Sqoop的增量数据加载策略,提供详细的示例代码&am…

如何调整 Windows 11 任务栏位置、对齐方式,及自定义任务栏

更新于:2023-11-22 分类:Windows 阅读(115407) 评论(12) 如果你是 Windows 11 用户中的一员,一定在不断尝试它的新功能。Windows 11 操作系统采用了全新设计的外观,具有重新设计的 Windows 资源管理器、圆润的窗口边缘和默认将应用…

【期末不挂科-C++考前速过系列P5】大二C++实验作业-多态性(3道代码题)【解析,注释】

前言 大家好吖,欢迎来到 YY 滴C考前速过系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! YY的《C》专栏YY的《C11》专栏YY的《…

六、新建窗体时,几种窗体的区别

新建窗体时,会有几种类型的选项,很多同学不明白其中的意思,我们在本章节中详细介绍一下几种窗体的区别。 窗体的类型分以下几种 Dialog with Buttons Bottom 带按钮的对话框,按钮在底部 Dialog with Buttons Right 带按钮的对话框…

MySQL面试题 | 06.精选MySQL面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Open3D 计算点云质心和中心(18)

Open3D 计算点云质心和中心(18) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 质心和中心是有所区别的,点云质心可以看作每个点的坐标均值,点云中心可以看作点云所在包围盒的中心,这也是上一章坐标最值的常用方法,下面就两种方法进行实现(图例,大概就是这个意思…

SFP/SFP+/QSFP/QSFP+光模块和GTP/GTX/GTH/GTZ/GTY/GTM高速收发器

SFP/SFP/QSFP/QSFP光模块和GTP/GTX/GTH/GTZ/GTY/GTM高速收发器 SFP/SFP/QSFP/QSFP光模块概述SFPSFPQSFPQSFP关键参数说明 GTP/GTX/GTH/GTZ/GTY/GTM高速收发器区别XILINX 7系列FPGA中高速收发器使用 SFP/SFP/QSFP/QSFP光模块 概述 SFP( small form-factor pluggabl…

部分城市公交站点数据,Shp+excel格式数据,2020年,几何类型为点

随着城市的发展和人口的增长,公共交通成为了人们出行的重要方式之一。而公交站点作为公共交通的重要组成部分,其数据信息的获取和分析对于城市规划和管理具有重要意义。 今天来分享一下部分城市公交站点数据: 首先先了解下该数据的基本信息 …

Error: error:0308010C:digital envelope routines::unsupported的解决方案

因为最近安装了pnpm对node版本有要求,升级了node版本是18以后,在运行之前的项目,就跑不起来了,报错如下: Error: error:0308010C:digital envelope routines::unsupported解决方案一: node版本切换到16版…

MATLAB - 机器人关节空间运动模型

系列文章目录 前言 关节空间运动模型描述了在闭环关节空间位置控制下机械手的运动,在关节空间运动模型(jointSpaceMotionModel)对象和关节空间运动模型块中使用。 机器人机械手是典型的位置控制设备。要进行关节空间控制,需要指…

LLVM系列(1): 在微软Visual Studio下编译LLVM

参考链接: Getting Started with the LLVM System using Microsoft Visual Studio — LLVM 18.0.0git documentation 1.安装visualstudio,版本需要大于vs2019 本机环境已安装visual studio2022,省略 2安装Makefile,版本需要大…

定时器问题(vue的问题)

我在a页面写一个定时,让他每秒钟打印一个1,然后跳转到b页面,此时可以看到,定时器依然在执行。这样是非常消耗性能的。如下图所示: 解决方法1 首先我在data函数里面进行定义定时器名称: data() {return {t…

《ARM Linux内核源码剖析》读书笔记——0号进程(init_task)的创建时机

最近在读《ARM Linux内核源码剖析》,一直没有看到0号进程(init_task进程)在哪里创建的。直到看到下面这篇文章才发现书中漏掉了set_task_stack_end_magic(&init_task)这行代码。 下面这篇文章提到:start_kernel()上来就会运行 set_task_…