【TC3xx芯片】TC3xx芯片电源管理系统PMS详解

目录

前言

正文

1.供电模式选择(Supply Mode Selection)

1.1 供电域

1.2 供电模式

1.3 供电阈值

1.4 供电上升和下降行为Supply Ramp-up and Ramp-down Behavior

1.5 EVRC产生供电

2. 电源监控

2.1 电源监控原理

2.2 Primary低电压监控

2.3 Secondary高低电压监控

2.3.1 配置高低电压监控是否激活

2.3.2 配置高低电压的阈值

2.3.3 查看各种配置和事件状态

2.3.4 实时查看电压监控值

2.3.5 电压监控值是否适用滤波

2.4 电源监控异常中断

3. 电源管理

3.1 电源管理概述

3.1.1 CPU模式

3.1.2 系统模式

3.2 Standby Mode

3.2.1 VEVRSB单独供电且VEXT断电

3.2.2 Standby RAM

3.3.3 Standby ControllerR(SCR)接口

3.3.4 进入到Standby Mode前应该考虑的问题


前言

电源管理系统(PMS)这一章节很多内容和硬件电路特性相关,很多内容作者也看不懂更不知道怎么去使用,但是,我们本着软件开发的角度去理解TC3xx芯片的电源管理模块,起码要搞明白以下几个问题:

问题1:TC3xx芯片有哪几种电源供电模式,怎么确定系统当前是什么电源模式,各个电源模式的适用场景是?

问题2:如何使能TC3xx芯片PMS模块的电压监控,如何配置电压监控的阈值,如何配置电压异常后的异常中断?

问题3:TC3xx芯片的CPU有几种电源模式,系统上电后的默认模式是什么,各个模式的进入和退出条件是什么?

问题4:如何设计基于TC3xx芯片的ECU低功耗?

带着上述问题,我们来一起学习TC3xx芯片的电源管理系统。

缩略词

简写

全称

PMS

Power Management System

EVRC

Embedded Voltage Regulators

LVD

Low Voltage Detection

SCR

Standby Controller

OCDS

On-Chip Debug Support


注:本文章引用了一些第三方工具和文档,若有侵权,请联系作者删除!

正文

1.供电模式选择(Supply Mode Selection

1.1 供电域

从下图可知,TC3xx芯片不同的功能域需要不同的供电输入,比如:

Standby Domain的供电是VECRSB.

ADC采集模块的供电是VDDM.

CPU的的供电时VDD.

这些域的供电,既可以通过外部(externally)电源直接供电,也可以通过外接单电源后通过EVRC转化输出内部供电。这样,就引出了TC3xx芯片的供电模式的概念,请参考下1.2章节。

小问题:为什么要设计为不同的功能域采用不同的供电输入了,而不是统一的一个电源供应?

:个人理解一个重要原因就是为了做低功耗,不同的功能域是不同的供电输入,也就是意味这在某些场景下,我们不需要用到的一些功能模块可以直接通过配置断电,降低ECU功耗。

1.2 供电模式

TC3xx的供电模式需要硬件设计来选定,硬件电路对HWCFG [2:1]的配置也就是P14.2和P14.5的电平输入状态决定TC3xx芯片的供电模式。

两个Pin脚,也就有4中输入组合,也就对应下表的4中电源供电模式。

以HWCFG[2:1] = 10B来举例说明:

1.HWCFG [1] = 0,也就是EVR33 OFF。EVR33是PMS内部一个硬件模块,可以生成3.3V的内部供电,EVR33 OFF也就是Disable了EVR33了,不需要这个供电了。

2. HWCFG [2] = 1,也就是EVRC ON。EVRC是PMS内部一个硬件模块,可以生成1.25V的内部供电,EVR33 ON也就是Enable了EVRCC了,内部其他模块可以适用1.25V这个供电。

3.

给所有Pin脚(Pad)供电的VEXT,

给Standby Domain(SCR)供电的VEVRSB,

给Flash供电的VDDP3,以及VFLEX/VFLEX2和VDDFL3都为外部3.3V供电。

给ADC供电的VDDM和VAREFx可选为外部5V或者3.3V供电。

给CPU供电的VDD由EVRC产生。

小问题:HWCFG[2:1] = 10B时为3.3V单电源供电模式(3.3V single source supply),其实ADC模块还是可以选择为外部5V供电的?

:我们所说的单电源供电主要说的就算VEXT和VDDP3这两个电源。给ADC供电的VDDM是另外独立的概念,也就是说在3.3V单电源供电模式下ADC供电电源VDDM还是可以外接3.3V或者5V电源。

4.外部3.3V单电源供电模式,并不是所有的电源都由同一个外部电源供应。考录到ECU的低功耗设计,起码用于Standby Domain的VEVRSB和VEXT等电源应该独立分开,也就是能保证ECU进入到Standby模式后能把其他电源断开,降低功耗。

5. TC3xx芯片对HWCFG [6:1] 对应的引脚都有一个内部的弱上拉(weak pull-up),如果芯片上电后如果外部没有对应的电路连接到HWCFG [6:1] 也能保证芯片的电源模式是确定的(11B模式)。

小问题:什么是弱上拉?

:和C语言中的弱函数(weak function)类似,如果我们定义了一个呆weak修饰的函数则这个函数为弱函数,反正为强函数,同时定义一个相同函数签名的弱函数和强函数,编译器只会认强函数,但是没有定义强函数的时候弱函数也是可以编译进可执行文件的。类比到硬件的弱上拉,也就是如果外部没有强上拉或者下拉的时候,弱上拉能保证Pin是处于确定的高电平状态的。

1.3 供电阈值

4中供电模式都有对应的供电阈值,这里仅接收3.3V单电源供电模式的阈值。 如下图所示,如果供电电压超过了阈值范围,就可能产生SRC,后文介绍。这里只要了解下3.3V供电时,各个电源的正常电压范围即可,在ECU开发阶段首先得保证ECU的供电是正常的,也就是用万用表测量电源电压后和这个表对比。

1.4 供电上升和下降行为Supply Ramp-up and Ramp-down Behavior

四种供电模式配置都有对应的上下电行为,这里仅介绍常见的3.3V单电源供电模式。

3.3V单电源供电模式时,VEXT = VDDP3 = 3.3V. VDD由内部的EVRC产生。

. PORST这个引脚既是输入引脚也是输出引脚,当PORST(Input)或者PORST(output)激活的时候(Active, Low level)PORST处于激活状态。

. PORST (input) 激活意味着外部电路/设备通过将 PORST 引脚拉低而保持复位MCU请求。 建议保留所激活的 PORST (input) ,直到外部电源高于相应的复位阈值。

. PORST (output) 激活意味着 μC 在内部Reset并拉低PORST 引脚,这样可以将Reset信号传播到外部设备。 当三个供电 (VDD , VDDP3 或 VEXT) 中至少有一个供电低于主欠压重置阈值时, μC 会拉低(Active) PORST (output)。 当所有电源设备都高于其主重置阈值且基本电源和时钟基础设施可用时。 μC 会拉高 PORST (output)引脚。

注意:对于我们而言,着重理解在上下电过程中PORT引脚是否处于Active状态就行,处于Active状态时,MCU就处于Reset状态

注意:经常会在Datasheet看到Assert(Asserting、Asserted),De-assert(Deassert、deasserting、deasserted)等词,如下面这句:

PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.

那这个词是什么意思呢,下面就来解释一下这两个词的意思:

Assert:意思就是把信号变为active(可以理解为有效),根据系统有求不同,该有效电平可以是高电平(即高有效)也可以是低电平(即低有效)。


De-assert:意思就是解除active状态,就是信号变为非active状态,可以是高也可以是低。

英文解释:

Assert:Set a signal to its “active” state;

De-assert: Set a signal to its “inactive” state。
If a signal is active-low, “asserting” that signal means setting it low and deasserting it means setting it high。

1.5 EVRC产生供电

对于EVRC的内部原理都是一些硬件特性的描述,我们着重了解以下几点即可:

单电源3.3V供电时:

1. EVRC产生一个1.25V的VDD电源给CPU供电。

2. 单电源3.3V供电时硬件电路要外接一个N mos管和一个P mos管.

3. EVRC内部可以配置用于内部同步的PWM频率,适用0.8MHz还是1.8MHz会影响ECU的EMI/EMC特性。

至于其内部复杂的原理,可以在需要的时候再去详细了解。

2. 电源监控

2.1 电源监控原理

两种电源监控模式,Primary Monitor主要监控VEXT VDDP3 VDD三种电源,三个电源都有一个最小的threshold ,如果监控到小于最小的threshold就会触发LVD Reset。Secondary Monitor除了VEXT VDDP3 VDD外还监控VEVRSB VDDM VDDPD,它监控的电源可以设置一个范围,一旦超过范围就会产生一个Alarm给到SMU。Primary Monitor和Secondary Monitor的VREF都用到SHPBG的一个模块(芯片内部的一个DCDC的模块)。为了功能安全的考虑,PLPBG这个DCDC模块在电源上升/建立过程中会和SHPBG进行相互的检测,保证电源部分的冗余性和多样性。

2.2 Primary低电压监控

低电压监控一定是Enable的,用户不可屏蔽。低电压检测的阈值因芯片型号的不同而不同。检测到低电压后,芯片持续拉低(Active)PORST,产生Cold Reset.复位后,可通过RSTATAT寄存器来查看是否是低电压复位。

2.3 Secondary高低电压监控

Secondary高低压监控是可配置的,可以配置高低压的阈值以及是否产生Alarm请求到SMU。

2.3.1 配置高低电压监控是否激活

2.3.2 配置高低电压的阈值

2.3.3 查看各种配置和事件状态

2.3.4 实时查看电压监控值

2.3.5 电压监控值是否适用滤波

2.4 电源监控异常中断

PMS的Secondary监控到电压异常后能产生SRC请求给到IR(Interrupt Router)模块,IR模块将请求路由到CPU产生中断(注意:SRC可以通过IR模块路由到DMA或者CPU)。

值得注意的是,是否产生SRC请求,需要配置PMSIEN寄存器。

3. 电源管理

3.1 电源管理概述

3.1.1 CPU模式

从单个CPU角度来讲,PM模块能够管理的CPU的两个电源模式:

. CPU Run Mode

. CPU Idle Mode

关于PMS模块管理的两个CPU Mode的描述入下表所示:

注意IDLE模式的进入和退出条件,通过寄存器设置进入IDLE模式,中断或者Trap退出IDLE模式。

站在整个芯片的角度来看,CPU模式分为Master CPU(CPU0)模式和Slave CPU(CPUx, x=0,1,2,3,4,5…)模式。

CPU0 modes: CPU0复位后,CPU0自动切换到RUN模式,RUN和IDLE模式之间可以通过PMS模块的PMCSR0寄存器的REQSLP位域控制切换。

CPUx modes: CPUx复位后,CPU自动进入到Halt模式(CPUx是不工作的),从Halt模式单向切换到RUN模式需要控制SYSCON.BHALT = 0,RUN和IDLE模式之间可以通过PMS模块的PMCSR0寄存器的REQSLP位域控制切换。

3.1.2 系统模式

从系统(System)角度来讲,PM模块能够管理系统的三个电源模式:

. System Run Mode

. System Sleep Mode

. System Standby Mode

关于PMS模块管理的System Mode的描述入下表所示:

需要注意的是系统Standby Mode会因硬件的设计的不同(供电模式)而不同,VEXT和VERSB如果是同一个外部供电则进入Standby Mode后VEXT和VERSB都还有供电,如果VEXT和VERSB是单独供电,则进入Standby Mode后会切断VEXT的供电只有VERSB供电,这样进入和退出Standby模式的条件所有不同。

3.2 Standby Mode

Idle和Sleep模式一般在ECU设计上不会使用,因为Standby模式才能降到最低的功耗。这里也仅介绍Standby Mode,Idle和Sleep模式想了解的可以去参考芯片手册。

Stand模式又以VEVRSB单独供电的硬件设计方式最为常见,这里也进介绍VEVRSB单独供电的模式。

3.2.1 VEVRSB单独供电且VEXT断电

进入到Standby模式后,图中深灰色的模块一点是Inactive的(不工作),浅灰色的模块可配置为Active或者Inactive,无色部门的模块一定是工作的。

进入Standby模式可以通过配置寄存器的方式,也可以通过VEXT supply ramp-down方式,对于的寄存器或者外部操作如下:

退出Standby模式,每种退出机制都需要配置PMSWCR0寄存器的Enable位且都在VEXT已经供电后进行:

3.2.2 Standby RAM

什么是Standby RAM?

通过配置,进入到Standby Mode后依然能够保持供电也就能保存数据的的RAM。

Standby RAM具体是那些RAM

DLMU0的0x9000 0000 – 0x900 7FFF这前(lower half)32Kbyte是DLMU0的Standby RAM.

DLMU0的0x9001 8000 – 0x9001 FFFF这后(upper half)32Kbyte是DLMU1的Standby RAM.

其他都不是Standby RAM.

如何使能Standby RAM

配置PMSWCR0寄存器的STBYRAMSEL位域Enable/Disable Standby RAM. 配置完后可以通过PMSWSTAT2寄存器的STBYRAM位域来检测Standby RAM是否配置成功。

注意:配置使用了Standby RAM后,目的就是为了进入Standby状态后保存RAM的数据,所以当唤醒系统后一般会重新运行软件,这个时候在Startup Software里面需要判断PMSWSTAT2. STBYRAM信号来决定要不要初始化Standby RAM区域(没有使用Standby RAM就需要进行RAM初始化,防止ECC错误产生)。

3.3.3 Standby ControllerR(SCR)接口

Tricore在RUN的初始化阶段会启动SCR,Tricore进入到Standby Mode后SCR还在运行,一般通过SCR来负责唤醒Tricore. 这样就需要Tricore和SCR直接由硬件接口。

PMSWCR4.SCREN寄存器信号配置是否使能SCR.

PMSWSTAT.SCR寄存器位域信号能反馈SCR是否已经使能。

PMSWCR4.SCRSTREQ寄存器位域信号能在Tricore核请求复位SCR.

PMSWSTAT.SCRST寄存器信号能标识SCR有没有复位。

PMSWSTATCLR.SCRSTCLR寄存器信号请求清除SCR复位标志。

在Reset释放后,固件将根据 PMSWCR4.SCRCFG的硬件配置初始化 SCR 子系统。

SCR通过SCRINTEXCHG字段传递信息到Tricore,Tricore通过PMSWCR2.SCRINT寄存器字段从 SCR 到 PMS/CPUx 的快速数据读取。 CPUx 读取的数据可能是由于 SCR 中断而导致的,从而对SCR中断进行解码。使用此功能的前提是配置PMSIEN. SCRINT使能。也就是:

SCR 写数据 -> SCRINTEXCHG

Tricore读数据 -> PMSWCR2.SCRINT(前提是PMSIEN. SCRINT使能)

PMSWCR2.TCINTREQ寄存器字段能触发SCR中的中断,PMSWCR2.TCINT寄存器字段能快速的从Tricore传递信息到SCR. SCR可以从TCINTEXCHG读取数据,也就是:

Tricore写数据 -> PMSWCR2.TCINT

SCR读数据 -> TCINTEXCHG

SCR能通过NMICON.SCRINTTC寄存器字段请求Tricore中断,

SCR的ECC错误,WDT看门狗报错,SCR内部软件复位标志都可以通过PMSWCR2.SCRECC, SCRWDT and SCRRST寄存器字段获取。

Tricore的各种复位(application,system, power-on resets)可以标识在PMSWCR2.RST字段,并能传递到SCR的MRSTST.RST寄存器字段。SMU引起的复位标识在PMSWCR2.SMURST寄存器字段,能传递到SCR寄存器的MRSTST字段(SCR中可能产生中断)。

如果配置了 SCRWKEN 寄存器字段, SCR 能将主核从Standby 状态唤醒。 当 SCR 以 20 MHz 运行时,课堂通过配置 SCRWKEN 启用 SCR 唤醒。 SCR SW 通过 STDBYWKP 寄存器中的 SCRWKP 位发出唤醒请求,如 SCR SCU 章节所述。 在主核唤醒时,设置了 SCRWKP 事件标志,该标志应通过 SCRWKPCLR 寄存器位清除。

3.3.4 进入到Standby Mode前应该考虑的问题

进入Standby模式之前,模块应该按顺序关闭,以避免大负荷跳动。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/316346.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

怎么把身份证压缩到200k以下?一分钟教你如图片压缩

在网络平台办理一些业务的时候,经常会需要上传我们的身份证照片,但是大多数平台为了用户体验,会限制上传的图片大小,比如图片不得超过200kb,当我们提交的身份证图片超出限制,就无法顺利提交;这时…

【Docker篇】使用Docker操作镜像

文章目录 🛸镜像🌺基本操作⭐docker --help⭐docker pull [ 参数 ]⭐docker images⭐docker save -- 导出⭐docker rmi -- 删除⭐docker load -- 导入 🛸镜像 镜像是指在计算机领域中,通过复制和创建一个与原始对象相似的副本的过…

微信小程序快速入门02(含案例)

🏡浩泽学编程:个人主页 🔥 推荐专栏:《深入浅出SpringBoot》《java项目分享》 《RabbitMQ》《Spring》《SpringMVC》 🛸学无止境,不骄不躁,知行合一 文章目录 前言一、页面导航1.…

精确掌控并发:分布式环境下并发流量控制的设计与实现(一)

这是《百图解码支付系统设计与实现》专栏系列文章中的第(10)篇。 本篇主要讲清楚常用的并发流量控制方案,包括固定窗口、滑动窗口、漏桶、令牌桶、分布式消息中间件等,以及各种方案在支付系统不同场景下的应用。 在非支付场景&a…

若依实现前段后登录密码加密

若依虽然有加密解密功能,然后只有前端有,在用户点击保存密码的时候,会将密码保存到本地,但是为了防止密码泄露,所以在保存的时候,进行加密,在回显密码的时候进行解密显示,用户在登录…

上门回收小程序开发,让回收更加简单

资源回收一直是当下深受大众关注的话题,如何做到资源不浪费,成为了大众要考虑的问题。在人们环保意识的加深下,回收行业也是获得了大众的关注,逐渐形成了一个新的商业模式。 随着互联网技术的发展,回收行业也更加方便…

乱码问题汇总

写在前面 在工作中经常会碰到各种莫名其妙的乱码问题,但通过之前的学习:字符集&字符编码-CSDN博客 ,可以知道乱码的根本原因就是使用和数据源编码不一样的编码解码导致。 如:BIG5解码GB2312编码内容,编解码不一致…

C++学习笔记(三十五):c++ 函数指针及lambda表达式

本节介绍c函数指针。在一些源码中经常能看到c函数指针,但之前一直觉着这一块比较复杂,就一直没去仔细研究,终于有时间去仔细研究这一块内容了。 c风格的函数指针 函数指针是指将一个函数赋值给一个变量的方法,可以将函数作为一个参…

Oracle篇—实例中和name相关参数的区别和作用

☘️博主介绍☘️: ✨又是一天没白过,我是奈斯,DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux,也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章,并且也会默默的点赞收藏加关注❣…

可以在微信群里使用midjourney,gpt4,gemini,文心一言4.0,且免费

免费使用gpt4和midjourney 免费使用 参考链接: https://chat.xutongbao.top/

(核心变量)全国上市公司对外开放程度+dofile+参考文献(2000-2022年)

上市公司的对外开放程度数据反映了这些公司在国际市场上的活跃度和全球化程度。这包括了它们的国际贸易参与度、跨国投资和合作、国际市场的营销和品牌推广策略,以及在不同国家和地区的业务布局。此外,这段时间内不同行业和公司的对外开放程度可能有明显…

IDEA新建SpringBoot工程时java版本只有17和21

解决方法:替换源 参考博客:https://www.kuazhi.com/post/712799571.html

VirtualBox安装linuxmint-21.2虚拟机并配置网络

VirtualBox安装linuxmint-21.2虚拟机并配置网络 适用于在VirtualBox平台上安装linuxmint-21.2虚拟机。 1. 安装准备 1.1 安装平台 Windows 11 1.2. 软件信息 软件名称软件版本安装路径Oracle VM VirtualBoxVirtualBox-7.0.12-159484D:\softwareCentOS7CentOS-7.9.2009E:\…

4点优势,昂首资本使用浮动差价不使用固定差价的原因

在交易中,很多投资者和昂首资本一样,会使用浮动点差而不使用固定点差,那是因为投资者和昂首资本一样认为,使用浮动差价交易会比使用固定价差交易更有优势。 首先在大部分交易时段,价差缩小。正如投资者和昂首资本所知…

亚马逊怎么防止店铺关联?

亚马逊(Amazon)为了确保公平竞争和防止不当行为,采取了一些措施来防止店铺关联,即通过不同的方式将多个店铺相关联,以获取不正当的竞争优势。以下是一些亚马逊防止店铺关联的主要措施: 同一经营者规定&…

自己动手写编译器:自顶向下的自动状态机

本节我们介绍编译原理中一种新的数据结构叫自顶向下的自动状态机。前面我们在做词法解析时接触了大量自动状态机,他们存在一个缺陷那就是无法对要识别的字符串进行计数,因此当我们要判断括号对是否匹配时,使用在词法解析的状态机就处理不了&a…

世界人口数据分析与探索

文章目录 世界人口数据集介绍数据集 1:世界国家统计数据:数据集 2:世界人口详细信息(2023 年):数据集 3:按年份划分的世界人口(1950-2023): 数据分析导入必要…

【金猿CIO展】步长制药信息化管理与建设中心总经理束炼:IT部门既要懂技术,也要懂业务...

‍ 束炼 本文由步长制药信息化管理与建设中心总经理束炼撰写并投递参与“数据猿年度金猿策划活动——2023大数据产业年度优秀CIO榜单及奖项”评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 随着数字化转型的浪潮席卷各行各业,中国数字经济已进入快速发展阶…

Godot之StringName解析

类描述 在Godot中,StringName是唯一字符串的内置类型。 StringName 是不可变的字符串,用于唯一名称的通用表示(也叫“字符串内嵌”)。值相同的两个 StringName 是同一个对象。进行比较时比普通 String 要快很多。 对于需要 Str…