大创项目推荐 深度学习猫狗分类 - python opencv cnn

文章目录

  • 0 前言
  • 1 课题背景
  • 2 使用CNN进行猫狗分类
  • 3 数据集处理
  • 4 神经网络的编写
  • 5 Tensorflow计算图的构建
  • 6 模型的训练和测试
  • 7 预测效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习猫狗分类 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

要说到深度学习图像分类的经典案例之一,那就是猫狗大战了。猫和狗在外观上的差别还是挺明显的,无论是体型、四肢、脸庞和毛发等等,
都是能通过肉眼很容易区分的。那么如何让机器来识别猫和狗呢?这就需要使用卷积神经网络来实现了。
本项目的主要目标是开发一个可以识别猫狗图像的系统。分析输入图像,然后预测输出。实现的模型可以根据需要扩展到网站或任何移动设备。我们的主要目标是让模型学习猫和狗的各种独特特征。一旦模型的训练完成,它将能够区分猫和狗的图像。

2 使用CNN进行猫狗分类

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
在这里插入图片描述

3 数据集处理

猫狗照片的数据集直接从kaggle官网下载即可,下载后解压,这是我下载的数据:
在这里插入图片描述在这里插入图片描述
相关代码



    import os,shutil
    
    original_data_dir = "G:/Data/Kaggle/dogcat/train"
    base_dir = "G:/Data/Kaggle/dogcat/smallData"
    if os.path.isdir(base_dir) == False:
        os.mkdir(base_dir)
    
    # 创建三个文件夹用来存放不同的数据:train,validation,test
    train_dir = os.path.join(base_dir,'train')
    if os.path.isdir(train_dir) == False:
        os.mkdir(train_dir)
    validation_dir = os.path.join(base_dir,'validation')
    if os.path.isdir(validation_dir) == False:
        os.mkdir(validation_dir)
    test_dir = os.path.join(base_dir,'test')
    if os.path.isdir(test_dir) == False:
        os.mkdir(test_dir)
    
    # 在文件中:train,validation,test分别创建cats,dogs文件夹用来存放对应的数据
    train_cats_dir = os.path.join(train_dir,'cats')
    if os.path.isdir(train_cats_dir) == False:
        os.mkdir(train_cats_dir)
    train_dogs_dir = os.path.join(train_dir,'dogs')
    if os.path.isdir(train_dogs_dir) == False:
        os.mkdir(train_dogs_dir)
    
    validation_cats_dir = os.path.join(validation_dir,'cats')
    if os.path.isdir(validation_cats_dir) == False:
        os.mkdir(validation_cats_dir)
    validation_dogs_dir = os.path.join(validation_dir,'dogs')
    if os.path.isdir(validation_dogs_dir) == False:
        os.mkdir(validation_dogs_dir)
    
    test_cats_dir = os.path.join(test_dir,'cats')
    if os.path.isdir(test_cats_dir) == False:
        os.mkdir(test_cats_dir)
    test_dogs_dir = os.path.join(test_dir,'dogs')
    if os.path.isdir(test_dogs_dir) == False:
        os.mkdir(test_dogs_dir)


    #将原始数据拷贝到对应的文件夹中 cat
    fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(train_cats_dir,fname)
        shutil.copyfile(src,dst)
    
    fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(validation_cats_dir,fname)
        shutil.copyfile(src,dst)
    
    fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
    for fname in fnames:
        src = os.path.join(original_data_dir,fname)
        dst = os.path.join(test_cats_dir,fname)
        shutil.copyfile(src,dst)


#将原始数据拷贝到对应的文件夹中 dog
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(train_dogs_dir,fname)
    shutil.copyfile(src,dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(validation_dogs_dir,fname)
    shutil.copyfile(src,dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
    src = os.path.join(original_data_dir,fname)
    dst = os.path.join(test_dogs_dir,fname)
    shutil.copyfile(src,dst)
print('train cat images:', len(os.listdir(train_cats_dir)))
print('train dog images:', len(os.listdir(train_dogs_dir)))
print('validation cat images:', len(os.listdir(validation_cats_dir)))
print('validation dog images:', len(os.listdir(validation_dogs_dir)))
print('test cat images:', len(os.listdir(test_cats_dir)))
print('test dog images:', len(os.listdir(test_dogs_dir)))
train cat images: 1000
train dog images: 1000
validation cat images: 500
validation dog images: 500
test cat images: 500
test dog images: 500


4 神经网络的编写

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5 Tensorflow计算图的构建

然后,再搭建tensorflow的计算图,定义占位符,计算损失函数、预测值和准确率等等

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

6 模型的训练和测试

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(TRAIN_STEP):
        train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

        eval_ops = [self.loss, self.acc, self.train_op]
        eval_ops_results = sess.run(eval_ops, feed_dict={
            self.x:train_data,
            self.y:train_label,
            self.keep_prob:0.7
        })
        loss_val, train_acc = eval_ops_results[0:2]

        acc_list.append(train_acc)
        if (i+1) % 100 == 0:
            acc_mean = np.mean(acc_list)
            print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                i+1,loss_val,train_acc,acc_mean
            ))
        if (i+1) % 1000 == 0:
            test_acc_list = []
            for j in range(TEST_STEP):
                test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                acc_val = sess.run([self.acc],feed_dict={
                    self.x:test_data,
                    self.y:test_label,
                    self.keep_prob:1.0
            })
            test_acc_list.append(acc_val)
            print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                i+1, np.mean(test_acc_list)
            ))
    # 保存训练后的模型
    os.makedirs(SAVE_PATH, exist_ok=True)
    self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:
在这里插入图片描述
训练1万步后模型测试的平均准确率有0.82。

7 预测效果

选取三张图片测试
在这里插入图片描述
在这里插入图片描述
可见,模型准确率还是较高的。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315482.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何配置Kafka账号密码

背景 我们需要与第三方系统进行数据同步,需要搭建公网Kafka,Kafka默认是没有用户密码校验的,所以我们需要配置用户名密码校验。 配置 新增JAAS配置文件 在conf目录下新增kafka_server_jaas.conf文件,文件内容如下:…

前端规范扩展

前端编程规范是基于原有vue2基础上那套《编码风格及标准》上,应用于vue3、typescript、vite2基础上延伸出来的扩展补充,持续完善 一、编码规范 ESLint 代码检测工具 Pretter 代码格式化工具配合双校验代码 Git 规范 - 编码工具 vscode 同步参考文档中…

MySQL夯实之路-查询性能优化深入浅出

MySQL调优分析 explain;show status查看服务器状态信息 优化 减少子任务,减少子任务执行次数,减少子任务执行时间(优,少,快) 查询优化分析方法 1.访问了太多的行和列&#xff1…

c语言三目运算符(条件运算符)

c语言三目运算符 c语言三木运算符 c语言三目运算符一、c语言三目运算符(条件运算符)格式二、c语言三目运算符(条件运算符)嵌套三目运算符 一、c语言三目运算符(条件运算符)格式 三目运算符格式:…

NAND新一代接口Separate Command Address (SCA) 简介

通过NAND Flash总线传输的信号分为三种类型:命令(Commands)、地址(Addresses)和数据(Data)。这些信号利用DQ[7:0]时间分时复用技术,在不同的时间段分别进行传输。其中,数…

使用Pygame库创建了一个窗口,并在窗口中加载了一个名为“ball.png“的图片,通过不断改变物体的位置,实现了一个简单的动画效果

import pygame import sys# 初始化Pygame pygame.init()# 创建窗口 screen pygame.display.set_mode((640, 480))# 加载图片 image pygame.image.load("ball.png")# 将物体初始位置设为屏幕左上角 x 0 y 0# 游戏循环 while True:# 处理事件for event in pygame.e…

四川古力未来科技有限公司:抖音小店的崛起之路

随着互联网的飞速发展,电子商务已经成为人们日常生活中不可或缺的一部分。作为一家以科技为核心的公司,四川古力未来科技有限公司在电子商务领域中崭露头角,特别是其抖音小店的发展引人注目。 四川古力未来科技有限公司的抖音小店自开业以来&…

redis(14):缓存雪崩、击穿、穿透及其处理方式

1 Redis 缓存过程 通常后端会采用Mysql等磁盘数据库,可以持久化但是访问慢,高并发时性能差,需要设置Nosql内存型数据库缓存:Redis等; Redis 数据库运行在内存中,因此他的查询速度比 MySql 快的多。所以我们会把一些用户经常查询的数据放在 Redis 中,当 Redis 有的时候…

word写标书的疑难杂症总结

最近在解决方案工作,与office工具经常打交道,各种问题,在此最下记录: 1.word中文档距离文档顶端有距离调整不了 1.疑难杂症问题1,多个空格都是不能解决 #解决办法:word中--布局-下拉框---“版式”--“垂直…

ArrayList源码阅读

文章目录 简介例子继承结构概览代码分析成员变量方法迭代器子列表 总结参考链接 本人的源码阅读主要聚焦于类的使用场景,一般只在java层面进行分析,没有深入到一些native方法的实现。并且由于知识储备不完整,很可能出现疏漏甚至是谬误&#x…

[机缘参悟-125] :实修 - “心性、自性”与“知识、技能”的区别,学习、修、悟的区别?

目录 一、“知识、技能” 1.1 什么是知识技能 1.2 知识、技能的位置 1.3 知识、技能的学习方法 二、"明心见性" 2.1 什么是"明心见性" 2.2 "明心见性"解读 2.2.1 何其自性,本自清净; 2.2.2 何其自性,…

将.NET应用转换成Window服务

写在前面 本文介绍了将.NET8.0应用程序转换成Windows服务。 需要在NuGet中获取并安装:Microsoft.Extensions.Hosting.WindowsServices 包 代码实现 using System.Runtime.InteropServices; using WorkerService1;public class Program {public static void Main…

【机器学习300问】6、什么是机器学习中的特征量?

一、首先我们看三个例子 例一:在辨别水果的任务中,人类一般会通过外观、味道、颜色等方面信息来进行区分。而机器学习则通过水果的颜色、重量、气味成分的量等被称之为“特征量”的数值来区分。 例二:在手写数字识别任务中,人类…

【Golang】二进制字符串转换为数字

在本文中,我们将探讨如何使用 Go 语言将十六进制字符串转换为二进制字符串,将不定长整型补码字符串转换为数字,以及如何将 IEEE754 标准的单精度(32位)和双精度(64位)浮点数字符串转换为数字。最…

LaTeX中的框以及框中的子图

目录 文章目录 目录框(盒子)\fboxframed包framed环境leftbar环境 mdframed包fcolorbox命令tcolorbox包adjustbox包调整盒子的宽度和高度旋转盒子 框中的子图问题一:框中插入图片问题二:给框中图片加上图名、编号caption包 问题三&…

动态规划学习笔记

背景 一般形式是求最值,核心是穷举。 首先,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,需要你熟练掌握递归思维,只有列出正确的「状态转移方程」…

【Python】新鲜出炉的海洋捕食者算法Python版本

2020年发表的海洋捕食者算法《Marine Predators Algorithm: A nature-inspired metaheuristic》。 作者只在原论文中给出了MATLAB代码,网上也没有Python版本,我自己用Python重写了MATLAB代码。 """2020海洋捕食者算法 """…

【自控实验】4. 数字仿真实验

本科课程实验报告,有太多公式和图片了,干脆直接转成图片了 仅分享和记录,不保证全对 使用matlab中的simulink进行仿真 实验内容 线性连续控制系统的数字仿真 根据开环传递函数G(S)的不同,完成两个线性连续控制系统的仿真。 …

C#上位机与欧姆龙PLC的通信12----【再爆肝】上位机应用开发(WPF版)

1、先上图 继上节完成winform版的应用后,今天再爆肝wpf版的,看看看。 可以看到,wpf的确实还是漂亮很多,现在人都喜欢漂亮的,颜值高的,现在是看脸时代,作为软件来说,是交给用户使用的…