本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。
本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模块即可实现其他版本的YOLO算法。
文章地址:
YOLOv5算法实现(一):算法框架概述
YOLOv5算法实现(二):模型加载
YOLOv5算法实现(三):数据集加载
YOLOv5算法实现(四):损失计算
YOLOv5算法实现(五):预测结果后处理
YOLOv5算法实现(六):评价指标及实现
YOLOv5算法实现(七):模型训练
YOLOv5算法实现(八):模型验证
YOLOv5算法实现(九):模型预测(编辑中…)
本文目录
- 1 引言
- 2 超参数文件
- 3 模型训练(train.py)
1 引言
本篇文章综合之前文章中的功能,实现模型的训练。模型训练的逻辑如图1所示。
2 超参数文件
YOLOv5中超参数主要包括学习率、优化器、置信度以及数据增强,源码中某一超参数文件及各参数含义如下所示:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for VOC training
# 学习率
lr0: 0.00334 # 初始学习率
lrf: 0.15135 # 最终学习率下降比例(lr0 * lrf)
# 优化器(SGD、Adam、AdamW)
momentum: 0.74832 # SGD momentum/Adam beta1
weight_decay: 0.00025 # optimizer weight decay 5e-4 ,权重衰变系数(防止过拟合)
# 热身训练(Warmup)
warmup_epochs: 3.3835 # 学习率热身epoch
warmup_momentum: 0.59462 # 学习率热身初始动量
warmup_bias_lr: 0.18657 # 学习率热身偏置学习率
# 损失增益
box: 0.02 # box loss gain
cls: 0.21638 # cls loss gain
cls_pw: 0.5 # cls BCELoss positive_weight
obj: 0.51728 # obj loss gain (scale with pixels)
obj_pw: 0.67198 # obj BCELoss positive_weight
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
# 正样本匹配阈值
iou_t: 0.2 # IoU training threshold
anchor_t: 3.3744 # anchor-multiple threshold
# 数据增强
## HSV色彩空间增强
hsv_h: 0.01041
hsv_s: 0.54703
hsv_v: 0.27739
## 仿射变换
degrees: 0.0 #图像旋转
translate: 0.04591 #图像平移
scale: 0.75544 #图像仿射变换的缩放比例
shear: 0.0 #设置裁剪的仿射矩阵系数
3 模型训练(train.py)
def train(hyp):
# ----------------------------------------------------------------------------------
# hyp超参数解析
# ----------------------------------------------------------------------------------
# 训练设备
device = torch.device(opt.device if torch.cuda.is_available() else "cpu")
print("Using {} device training.".format(device.type))
# 权重保存文件
wdir = "weights" + os.sep # weights dir
# 损失和学习率记录txt, 损失和学习率变化曲线, 权重文件保存路径
results_file, save_file_path, save_path \
= opt.results_file, opt.save_file_path, opt.save_path
# 模型结构文件
cfg = opt.yaml
# data文件路径, 其中存储了训练和验证数据集的路径
data = opt.data
# 训练批次
epochs = opt.epochs
batch_size = opt.batch_size
# 初始化权重路径
weights = opt.weights # initial training weights
# 训练和测试的图片大小
imgsz_train = opt.img_size
imgsz_test = opt.img_size
# 图像要设置成32的倍数
gs = 32 # (pixels) grid size
assert math.fmod(imgsz_test, gs) == 0, "--img-size %g must be a %g-multiple" % (imgsz_test, gs)
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# 数据字典 "classes": 类别数, "train":训练数据集路径 "valid":验证数据集路径 "names": 类别名
data_dict = parse_data_cfg(data)
train_path = data_dict['train']
val_path = data_dict['valid']
# 类别数
nc = opt.nc
# Remove previous results
for f in glob.glob(results_file):
os.remove(f)
# ----------------------------------------------------------------------------------
# 模型初始化(加载预训练权重)
# ----------------------------------------------------------------------------------
# 初始化模型
model = Model(cfg=cfg, ch=3, nc=nc).to(device)
# 开始训练的epoch
start_epoch = 0
best_map = 0
pretrain = False
if weights.endswith(".pt") or weights.endswith(".pth"):
pretrain = True
ckpt = torch.load(weights, map_location=device)
# load model
try:
ckpt["model"] = {k: v for k, v in ckpt["model"].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(ckpt["model"], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
# load results
if ckpt.get("training_results") is not None:
with open(results_file, "w") as file:
file.write(ckpt["training_results"]) # write results.txt
# 加载最好的map
if "best_map" in ckpt.keys():
best_map = ckpt['best_map']
# epochs
start_epoch = ckpt["epoch"] + 1
if epochs < start_epoch:
print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(opt.weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt
hyp['lr0'] = hyp['lr0'] * hyp['lrf']
print(colorstr('Pretrain') + ': Successful load pretrained weights.')
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# 定义优化器和学习率策略
# ----------------------------------------------------------------------------------
nbs = 64 # 训练多少图片进行一次反向传播
accumulate = max(round(nbs / batch_size), 1) # accumulate n times before optimizer update (bs 64)
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
# 定义优化器
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
# Scheduler
if opt.cos_lr:
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
else:
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = start_epoch # 指定从哪个epoch开始
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# 加载数据集
# ----------------------------------------------------------------------------------
train_dataset = LoadImagesAndLabels(train_path, imgsz_train, batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=False, # rectangular training
cache_images=opt.cache_images,)
# dataloader
num_workers = 0 # number of workers
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=num_workers,
# Shuffle=True unless rectangular training is used
shuffle=not opt.rect,
pin_memory=True,
collate_fn=train_dataset.collate_fn)
# 当需要根据map保存最好的权值时, 加载验证数据集
val_dataset = LoadImagesAndLabels(val_path, imgsz_test, batch_size,
hyp=hyp,
rect=True,
cache_images=opt.cache_images)
val_dataloader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
collate_fn=val_dataset.collate_fn)
# train_dataset.labels (1203, ) 1203张图片中的所有标签(nt,5)
# np.concatenate 在维度0上对所有标签进行拼接 (1880, 5)
labels = np.concatenate(train_dataset.labels, 0)
mlc = int(labels[:, 0].max()) # 最大的类别标签
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# 模型参数定义
# ----------------------------------------------------------------------------------
nl = model.model[-1].nl # 输出特征图数量
hyp['box'] *= 3 / nl # scale to layers
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
hyp['obj'] *= (imgsz_test / 640) ** 2 * 3 / nl # scale to image size and layers
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
compute_loss = ComputeLoss(model)
# ----------------------------------------------------------------------------------
# 开始训练
# ----------------------------------------------------------------------------------
nb = len(train_dataloader) # batches的数量, dataloader已经将data安装batch_size进行了打包
nw = max(round(hyp['warmup_epochs'] * nb), 100) # 热身训练的迭代次数, max(3 epochs, 100 iterations)
last_opt_step = -1 # 最后一次更新参数的步数
train_loss, train_box_loss, train_obj_loss, train_cls_loss = [], [], [], []
learning_rate = []
if opt.savebest:
best_map = ComputeAP(model, val_dataloader, device=device)
print(f"{colorstr('Initialize best_map')}: mAP@0.50 = {best_map: .5f}")
print(f'Image sizes {imgsz_train} train, {imgsz_test} val\n'
f'Using {num_workers} dataloader workers\n'
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs):
model.train()
# 训练过程中的信息打印
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
# 当前训练批次的平均损失
mloss = torch.zeros(4, device=device)
now_lr = 0.
optimizer.zero_grad()
# imgs: [batch_size, 3, img_size, img_size]
# targets: [num_obj, 6] , that number 6 means -> (img_index, obj_index, x, y, w, h)
# 其中(x, y, w, h)绝对作了缩放处理后的相对坐标
# paths: list of img path(文件路径)
for i, (imgs, targets, paths, _, _) in enumerate(metric_logger.log_every(train_dataloader, 50, header)):
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
# ----------------------------------------------------------------------------------
# Warmup 热身训练
# ----------------------------------------------------------------------------------
if ni <= nw:
xi = [0, nw] # x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# 前向传播
pred = model(imgs)
# 损失计算
loss_dict = compute_loss(pred, targets.to(device))
losses = sum(loss for loss in loss_dict.values())
loss_items = torch.cat((loss_dict["box_loss"],
loss_dict["obj_loss"],
loss_dict["class_loss"],
losses)).detach()
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
# 反向传播
losses *= batch_size
losses.backward()
# 每训练accumulate次进行参数更新
if ni - last_opt_step >= accumulate:
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss=losses, **loss_dict)
now_lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=now_lr)
# end batch ----------------------------------------------------------------------
scheduler.step()
train_loss.append(mloss.tolist()[-1])
learning_rate.append(now_lr)
result_mAP = ComputeAP(model, val_dataloader, device=device)
voc_mAP = result_mAP[1] # @0.50
# write into txt
with open(results_file, "a") as f:
# box_loss, obj_clss, cls_loss, train_loss, lr
result_info = [str(round(i, 4)) for i in [mloss.tolist()[0]]] + \
[str(round(i, 4)) for i in [mloss.tolist()[1]]] + \
[str(round(i, 4)) for i in [mloss.tolist()[2]]] + \
[str(round(i, 4)) for i in [mloss.tolist()[-1]]] + \
[str(round(now_lr, 6))] + [str(round(voc_mAP, 6))]
txt = "epoch:{} {}".format(epoch, ' '.join(result_info))
f.write(txt + "\n")
if opt.savebest:
if voc_mAP > best_map:
print(f"{colorstr('Save best_map Weight')}: update mAP@0.50 from {best_map: .5f} to {voc_mAP: .5f}")
best_map = voc_mAP
with open(results_file, 'r') as f:
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'training_results': f.read(),
'epoch': epoch,
'best_map': best_map
}
torch.save(save_files, save_path.format('best_map'))
else:
if (epoch + 1) % 20 == 0 or epoch == epochs - 1:
with open(results_file, 'r') as f:
save_files = {
'model': model.state_dict(),
'training_results': f.read(),
'epoch': epoch}
torch.save(save_files, save_path.format(epoch))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# -----------------------------------------
file = "yolov5s"
weight_file = f"weights/{file}" # 权重存储文件
result_file = f'results/{file}' # 训练损失、mAP等保存文件
if not os.path.exists(weight_file):
os.makedirs(weight_file)
if not os.path.exists(result_file):
os.makedirs(result_file)
# -----------------------------------------
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--nc', type=int, default=3)
yaml_path = f'cfg/models/{file}.yaml'
parser.add_argument('--yaml', type=str, default=yaml_path, help="model.yaml path")
parser.add_argument('--data', type=str, default='data/my_data.data', help='*.data path')
parser.add_argument('--hyp', type=str, default='cfg/hyps/hyp.scratch-med.yaml', help='hyperparameters path')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--cos-lr', type=bool, default=True, help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--img-size', type=int, default=640, help='test size')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--savebest', type=bool, default=False, help='only save best checkpoint')
# 当内存足够时, 设置为True, 将数据集加载到内存中, 在训练时不用从磁盘中读取图片可以加快训练速度
parser.add_argument('--cache-images', default=False, help='cache images for faster training')
# 预训练权重
weight = f'weights/{file}/{file}.pt'
parser.add_argument('--weights', type=str, default=weight if os.path.exists(weight) else "", help='initial weights path')
parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')
# 结果保存路径
time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
results_file = f"./results/{file}/results{time}.txt"
parser.add_argument("--results_file", default=results_file, help="save results files")
save_file_path = f'./results/{file}/loss_and_lr{time}.png'
parser.add_argument('--save_file_path', default=save_file_path, help="save loss and lr fig")
save_path = f"./weights/{file}/{file}-" + "{}.pt"
parser.add_argument('--save_path', default=save_path, help="weight save path")
opt = parser.parse_args()
# 检查文件是否存在
opt.cfg = check_file(opt.yaml)
opt.data = check_file(opt.data)
opt.hyp = check_file(opt.hyp)
print(opt)
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.FullLoader)
train(hyp)