K8s:Pod生命周期

我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:

  • pod创建过程

  • 运行初始化容器(init container)过程

  • 运行主容器(main container)

    • 容器启动后钩子(post start)、容器终止前钩子(pre stop)

    • 容器的存活性探测(liveness probe)、就绪性探测(readiness probe)

  • pod终止过程

在整个生命周期中,Pod会出现5种状态相位),分别如下:

  • 挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中

  • 运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成

  • 成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启

  • 失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态

  • 未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致

创建和终止

pod的创建过程

  1. 用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer

  2. apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端

  3. apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动

  4. scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer

  5. node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer

  6. apiServer将接收到的pod状态信息存入etcd中

 

pod的终止过程

  1. 用户向apiServer发送删除pod对象的命令

  2. apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead

  3. 将pod标记为terminating状态

  4. kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程

  5. 端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除

  6. 如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行

  7. pod对象中的容器进程收到停止信号

  8. 宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号

  9. kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见

初始化容器

初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:

  1. 初始化容器必须运行完成直至结束,若某初始化容器运行失败,那么kubernetes需要重启它直到成功完成

  2. 初始化容器必须按照定义的顺序执行,当且仅当前一个成功之后,后面的一个才能运行

初始化容器有很多的应用场景,下面列出的是最常见的几个:

  • 提供主容器镜像中不具备的工具程序或自定义代码

  • 初始化容器要先于应用容器串行启动并运行完成,因此可用于延后应用容器的启动直至其依赖的条件得到满足

接下来做一个案例,模拟下面这个需求:

假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器

为了简化测试,事先规定好mysql(192.168.109.201)和redis(192.168.109.202)服务器的地址

创建pod-initcontainer.yaml,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-initcontainer
  namespace: dev
spec:
  containers:
  - name: main-container
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
  initContainers:
  - name: test-mysql
    image: busybox:1.30
    command: ['sh', '-c', 'until ping 192.168.109.201 -c 1 ; do echo waiting for mysql...; sleep 2; done;']
  - name: test-redis
    image: busybox:1.30
    command: ['sh', '-c', 'until ping 192.168.109.202 -c 1 ; do echo waiting for reids...; sleep 2; done;']
# 创建pod
[root@master ~]# kubectl create -f pod-initcontainer.yaml
pod/pod-initcontainer created

# 查看pod状态
# 发现pod卡在启动第一个初始化容器过程中,后面的容器不会运行
root@master ~]# kubectl describe pod  pod-initcontainer -n dev
........
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  49s   default-scheduler  Successfully assigned dev/pod-initcontainer to node1
  Normal  Pulled     48s   kubelet, node1     Container image "busybox:1.30" already present on machine
  Normal  Created    48s   kubelet, node1     Created container test-mysql
  Normal  Started    48s   kubelet, node1     Started container test-mysql

# 动态查看pod
[root@master ~]# kubectl get pods pod-initcontainer -n dev -w
NAME                             READY   STATUS     RESTARTS   AGE
pod-initcontainer                0/1     Init:0/2   0          15s
pod-initcontainer                0/1     Init:1/2   0          52s
pod-initcontainer                0/1     Init:1/2   0          53s
pod-initcontainer                0/1     PodInitializing   0          89s
pod-initcontainer                1/1     Running           0          90s

# 接下来新开一个shell,为当前服务器新增两个ip,观察pod的变化
[root@master ~]# ifconfig ens33:1 192.168.109.201 netmask 255.255.255.0 up
[root@master ~]# ifconfig ens33:2 192.168.109.202 netmask 255.255.255.0 up

钩子函数

钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。

kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:

  • post start:容器创建之后执行,如果失败了会重启容器

  • pre stop :容器终止之前执行,执行完成之后容器将成功终止,在其完成之前会阻塞删除容器的操作

钩子处理器支持使用下面三种方式定义动作:

  • Exec命令:在容器内执行一次命令

……
  lifecycle:
    postStart: 
      exec:
        command:
        - cat
        - /tmp/healthy
……
  • TCPSocket:在当前容器尝试访问指定的socket
……      
  lifecycle:
    postStart:
      tcpSocket:
        port: 8080
……
  • HTTPGet:在当前容器中向某url发起http请求
……
  lifecycle:
    postStart:
      httpGet:
        path: / #URI地址
        port: 80 #端口号
        host: 192.168.109.100 #主机地址
        scheme: HTTP #支持的协议,http或者https
……

接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml文件,内容如下:

apiVersion: v1
kind: Pod
metadata:
  name: pod-hook-exec
  namespace: dev
spec:
  containers:
  - name: main-container
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    lifecycle:
      postStart: 
        exec: # 在容器启动的时候执行一个命令,修改掉nginx的默认首页内容
          command: ["/bin/sh", "-c", "echo postStart... > /usr/share/nginx/html/index.html"]
      preStop:
        exec: # 在容器停止之前停止nginx服务
          command: ["/usr/sbin/nginx","-s","quit"]
# 创建pod
[root@master ~]# kubectl create -f pod-hook-exec.yaml
pod/pod-hook-exec created

# 查看pod
[root@master ~]# kubectl get pods  pod-hook-exec -n dev -o wide
NAME           READY   STATUS     RESTARTS   AGE    IP            NODE    
pod-hook-exec  1/1     Running    0          29s    10.244.2.48   node2   

# 访问pod
[root@master ~]# curl 10.244.2.48
postStart...

容器探测

容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例" 摘除 ",不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:

  • liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器

  • readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量

livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。

上面两种探针目前均支持三种探测方式:

  • Exec命令:在容器内执行一次命令,如果命令执行的退出码为0,则认为程序正常,否则不正常

……
  livenessProbe:
    exec:
      command:
      - cat
      - /tmp/healthy
……
  • TCPSocket:将会尝试访问一个用户容器的端口,如果能够建立这条连接,则认为程序正常,否则不正常
……      
  livenessProbe:
    tcpSocket:
      port: 8080
……
  • HTTPGet:调用容器内Web应用的URL,如果返回的状态码在200和399之间,则认为程序正常,否则不正常
……
  livenessProbe:
    httpGet:
      path: / #URI地址
      port: 80 #端口号
      host: 127.0.0.1 #主机地址
      scheme: HTTP #支持的协议,http或者https
……

下面以liveness probes为例,做几个演示:

方式一:Exec

创建pod-liveness-exec.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-exec
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      exec:
        command: ["/bin/cat","/tmp/hello.txt"] # 执行一个查看文件的命令

创建pod,观察效果

# 创建Pod
[root@master ~]# kubectl create -f pod-liveness-exec.yaml
pod/pod-liveness-exec created

# 查看Pod详情
[root@master ~]# kubectl describe pods pod-liveness-exec -n dev
......
  Normal   Created    20s (x2 over 50s)  kubelet, node1     Created container nginx
  Normal   Started    20s (x2 over 50s)  kubelet, node1     Started container nginx
  Normal   Killing    20s                kubelet, node1     Container nginx failed liveness probe, will be restarted
  Warning  Unhealthy  0s (x5 over 40s)   kubelet, node1     Liveness probe failed: cat: can't open '/tmp/hello11.txt': No such file or directory
  
# 观察上面的信息就会发现nginx容器启动之后就进行了健康检查
# 检查失败之后,容器被kill掉,然后尝试进行重启(这是重启策略的作用,后面讲解)
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@master ~]# kubectl get pods pod-liveness-exec -n dev
NAME                READY   STATUS             RESTARTS   AGE
pod-liveness-exec   0/1     CrashLoopBackOff   2          3m19s

# 当然接下来,可以修改成一个存在的文件,比如/tmp/hello.txt,再试,结果就正常了......

方式二:TCPSocket

创建pod-liveness-tcpsocket.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-tcpsocket
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports: 
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      tcpSocket:
        port: 8080 # 尝试访问8080端口

创建pod,观察效果

# 创建Pod
[root@master ~]# kubectl create -f pod-liveness-tcpsocket.yaml
pod/pod-liveness-tcpsocket created

# 查看Pod详情
[root@master ~]# kubectl describe pods pod-liveness-tcpsocket -n dev
......
  Normal   Scheduled  31s                            default-scheduler  Successfully assigned dev/pod-liveness-tcpsocket to node2
  Normal   Pulled     <invalid>                      kubelet, node2     Container image "nginx:1.17.1" already present on machine
  Normal   Created    <invalid>                      kubelet, node2     Created container nginx
  Normal   Started    <invalid>                      kubelet, node2     Started container nginx
  Warning  Unhealthy  <invalid> (x2 over <invalid>)  kubelet, node2     Liveness probe failed: dial tcp 10.244.2.44:8080: connect: connection refused
  
# 观察上面的信息,发现尝试访问8080端口,但是失败了
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@master ~]# kubectl get pods pod-liveness-tcpsocket  -n dev
NAME                     READY   STATUS             RESTARTS   AGE
pod-liveness-tcpsocket   0/1     CrashLoopBackOff   2          3m19s

# 当然接下来,可以修改成一个可以访问的端口,比如80,再试,结果就正常了......

方式三:HTTPGet

创建pod-liveness-httpget.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-httpget
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:  # 其实就是访问http://127.0.0.1:80/hello  
        scheme: HTTP #支持的协议,http或者https
        port: 80 #端口号
        path: /hello #URI地址

创建pod,观察效果

# 创建Pod
[root@master ~]# kubectl create -f pod-liveness-httpget.yaml
pod/pod-liveness-httpget created

# 查看Pod详情
[root@master ~]# kubectl describe pod pod-liveness-httpget -n dev
.......
  Normal   Pulled     6s (x3 over 64s)  kubelet, node1     Container image "nginx:1.17.1" already present on machine
  Normal   Created    6s (x3 over 64s)  kubelet, node1     Created container nginx
  Normal   Started    6s (x3 over 63s)  kubelet, node1     Started container nginx
  Warning  Unhealthy  6s (x6 over 56s)  kubelet, node1     Liveness probe failed: HTTP probe failed with statuscode: 404
  Normal   Killing    6s (x2 over 36s)  kubelet, node1     Container nginx failed liveness probe, will be restarted
  
# 观察上面信息,尝试访问路径,但是未找到,出现404错误
# 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长
[root@master ~]# kubectl get pod pod-liveness-httpget -n dev
NAME                   READY   STATUS    RESTARTS   AGE
pod-liveness-httpget   1/1     Running   5          3m17s

# 当然接下来,可以修改成一个可以访问的路径path,比如/,再试,结果就正常了......

至此,已经使用liveness Probe演示了三种探测方式,但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:

[root@master ~]# kubectl explain pod.spec.containers.livenessProbe
FIELDS:
   exec <Object>  
   tcpSocket    <Object>
   httpGet      <Object>
   initialDelaySeconds  <integer>  # 容器启动后等待多少秒执行第一次探测
   timeoutSeconds       <integer>  # 探测超时时间。默认1秒,最小1秒
   periodSeconds        <integer>  # 执行探测的频率。默认是10秒,最小1秒
   failureThreshold     <integer>  # 连续探测失败多少次才被认定为失败。默认是3。最小值是1
   successThreshold     <integer>  # 连续探测成功多少次才被认定为成功。默认是1

下面稍微配置两个,演示下效果即可:

[root@master ~]# more pod-liveness-httpget.yamlvv
apiVersion: v1
kind: Pod
metadata:
  name: pod-liveness-httpget
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:
        scheme: HTTP
        port: 80 
        path: /
      initialDelaySeconds: 30 # 容器启动后30s开始探测
      timeoutSeconds: 5 # 探测超时时间为5s

重启策略

在上一节中,一旦容器探测出现了问题,kubernetes就会对容器所在的Pod进行重启,其实这是由pod的重启策略决定的,pod的重启策略有 3 种,分别如下:

  • Always :容器失效时,自动重启该容器,这也是默认值。

  • OnFailure : 容器终止运行且退出码不为0时重启

  • Never : 不论状态为何,都不重启该容器

重启策略适用于pod对象中的所有容器,首次需要重启的容器,将在其需要时立即进行重启,随后再次需要重启的操作将由kubelet延迟一段时间后进行,且反复的重启操作的延迟时长以此为10s、20s、40s、80s、160s和300s,300s是最大延迟时长。

创建pod-restartpolicy.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: pod-restartpolicy
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - name: nginx-port
      containerPort: 80
    livenessProbe:
      httpGet:
        scheme: HTTP
        port: 80
        path: /hello
  restartPolicy: Never # 设置重启策略为Never

运行Pod测试

# 创建Pod
[root@master ~]# kubectl create -f pod-restartpolicy.yaml
pod/pod-restartpolicy created

# 查看Pod详情,发现nginx容器失败
[root@master ~]# kubectl  describe pods pod-restartpolicy  -n dev
......
  Warning  Unhealthy  15s (x3 over 35s)  kubelet, node1     Liveness probe failed: HTTP probe failed with statuscode: 404
  Normal   Killing    15s                kubelet, node1     Container nginx failed liveness probe
  
# 多等一会,再观察pod的重启次数,发现一直是0,并未重启   
[root@master ~]# kubectl  get pods pod-restartpolicy -n dev
NAME                   READY   STATUS    RESTARTS   AGE
pod-restartpolicy      0/1     Running   0          5min42s

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Netty开发弹幕系统

用Nettywebsocket实现简单的web弹幕系统 服务端代码 1. pom依赖 <!-- Netty --><dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.66.Final</version></dependency><!-- N…

基于opencv的指针式仪表的识别与读数

对于指针式仪表的识别与读数&#xff0c;可以通过以下步骤使用OpenCV实现&#xff1a; 读取图像&#xff1a;使用cv2.imread()函数读取要处理的仪表图像。 灰度转换&#xff1a;使用cv2.cvtColor()函数将彩色图像转换为灰度图像。这是因为灰度图像只有一个通道&#xff0c;便…

Nginx负载均衡以及常用的7层协议和4层协议的介绍

一、引言 明人不说暗话&#xff0c;下面来解析一下 Nginx 的负载均衡。需要有 Linux 和 Nginx 环境哈。 二、nginx负载均衡的作用 高并发&#xff1a;负载均衡通过算法调整负载&#xff0c;尽力均匀的分配应用集群中各节点的工作量&#xff0c;以此提高应用集群的并发处理能力…

flutter在windows环境搭建

下载flutter https://flutter.cn/docs/development/tools/sdk/releases 下载相应的版本 我放在C盘下&#xff1a; 环境变量 再加系统变量&#xff1a; PUB_HOSTED_URLhttps://pub.flutter-io.cn 如图 FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn 完成

[自动驾驶算法][从0开始轨迹预测]:一、坐标和坐标系变换

既然要从0开始轨迹预测&#xff0c;那从哪开始写起呢&#xff1f;回想下自己的学习历程&#xff0c;真正有挑战性的不是模型结构&#xff0c;不是繁琐的训练和调参&#xff0c;而是数据的制作&#xff01;&#xff01;&#xff01; 笔者自认为不是一个数学基础牢固的人&#xf…

Photoshop 2024 (PS2024) v25 直装版 支持win/mac版

Photoshop 2024 提供了多种创意工具&#xff0c;如画笔、铅笔、涂鸦和渐变等&#xff0c;用户可以通过这些工具来创建独特和令人印象深刻的设计效果。增强的云同步&#xff1a;通过 Adobe Creative Cloud&#xff0c;用户可以方便地将他们的工作从一个设备无缝同步到另一个设备…

Docker之数据卷的使用

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《Docker之数据卷的使用》。&#x1f3af;&#x…

《GreenPlum系列》GreenPlum初级教程-03GreenPlum系统管理

文章目录 第三章 GreenPlum系统管理1.关于GreenPlum数据库发布版本号2.启动和停止GreenPlum数据库2.1 启动数据库2.2 重启数据库2.3 仅重新载入配置文件更改2.4 停止GreenPlum数据库2.5 停止客户端进程 3.GreenPlum数据库状态查询4.访问GreenPlum数据库4.1 数据库会话参数4.2 支…

基于STM32和ESP8266的物联网应用开发与实现

基于STM32和ESP8266的物联网应用开发与实现可以实现智能家居、智能工业、环境监测等多种应用&#xff0c;它将结合STM32微控制器的实时控制能力和ESP8266无线通信模块的WiFi连接能力。在本文中&#xff0c;我们将介绍如何设计和实现这样的物联网应用&#xff0c;并提供相关的代…

使用 Github、Hugo 搭建个人博客

Hugo 静态网站构建手册&#xff1a;https://jimmysong.io/hugo-handbook/ 关键字&#xff1a;开源 博客 框架 1、GitHub Pages 官网&#xff1a;https://pages.github.com/ 文档&#xff1a;https://docs.github.com/zh Github Pages 简介 Websites for you and your project…

java多线程(并发)夯实之路-线程池深入浅出

线程池 Thread Pool&#xff1a;线程池&#xff0c;存放可以重复使用的线程&#xff08;消费者&#xff09; Blocking Queue&#xff1a;阻塞队列&#xff0c;存放等待执行的任务&#xff08;生产者&#xff09; poll方法&#xff08;有时限地获取任务&#xff09;相对take注…

【iOS】数据存储方式总结(持久化)

在iOS开发中&#xff0c;我们经常性地需要存储一些状态和数据&#xff0c;比如用户对于App的相关设置、需要在本地缓存的数据等等&#xff0c;本篇文章将介绍六个主要的数据存储方式 iOS中数据存储方式&#xff08;数据持久化&#xff09; 根据要存储的数据大小、存储数据以及…

mac 使用brew卸载node

1.查看当前的node版本 node -v 2.查看使用brew 安装的版本&#xff0c;可以看到本机装了14、16、18版本的node brew search node 3.卸载node brew uninstall node版本号 --force 如分别删除14、16、18版本的node命令如下 brew uninstall node14 --force brew uninstall no…

漏洞分析|Cacti命令执行漏洞 (CVE-2022-46169)

1.漏洞描述 Cacti是一套基于PHP&#xff0c;MySQL&#xff0c;SNMP及RRDTool开发的网络流量监测图形分析工具&#xff0c;可为用户提供强大且可扩展的操作监控和故障管理框架。 该漏洞存在于remote_agent.php文件中&#xff0c;未经身份验证的恶意攻击者可以通过设置HTTP_变量…

UE4工程升级UE5教程及注意事项

原文链接&#xff1a;https://mp.weixin.qq.com/s/vSVu0VsNub0J62Nz7vM6cA虚幻引擎5迁移指南 | 虚幻引擎5.3文档 (unrealengine.com) 官方教程应该是从英文直接翻译过来的&#xff0c;过多词汇没修改&#xff0c;本篇重新整理修改一下&#xff0c;供各位参考。 本教程介绍&…

Java8常用新特性

目录 简介 1.默认方法 2..Lambda表达式 3.Stream API 4.方法引用 5.Optional类 简介 Java 8是Java编程语言的一个重要版本&#xff0c;引入了许多令人兴奋和强大的新特性。这些特性使得Java程序更加现代化、灵活和高效。让我们一起来探索一些Java 8的常用新特性吧&#…

达摩研究院Paraformer语音识别-中文-通用-16k

原文&#xff1a;https://github.com/alibaba-damo-academy/FunASR/blob/main/runtime/readme_cn.md FunASR软件包路线图 English Version&#xff08;docs&#xff09; FunASR是由阿里巴巴通义实验室语音团队开源的一款语音识别基础框架&#xff0c;集成了语音端点检测、语…

FlinkCDC的分析和应用代码

前言&#xff1a;原本想讲如何基于Flink实现定制化计算引擎的开发&#xff0c;并以FlinkCDC为例介绍&#xff1b;发现这两个在表达上不知以谁为主&#xff0c;所以先分析FlinkCDC的应用场景和技术实现原理&#xff0c;下一篇再去分析Flink能在哪些方面&#xff0c;做定制化计算…

【动态规划】LeetCode-42. 接雨水

42. 接雨水。 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1…

OpenCV-22高斯滤波

一、高斯函数的基础 要理解高斯滤波首先要直到什么是高斯函数&#xff0c;高斯函数是符合高斯分布的&#xff08;也叫正态分布&#xff09;的数据的概率密度函数。 高斯函数的特点是以x轴某一点&#xff08;这一点称为均值&#xff09;为对称轴&#xff0c;越靠近中心数据发生…